
Topic 1: Java Basics

[6] Try it out! (10 minutes)
Remember the earlier exercise game modelled as object-oriented:

• 6 players run around in a 2D maze, as 2 teams of 3.

• They can change the team they are on at any time by stepping onto a button in the middle of the maze. 
Stepping on the button swaps the player’s team, and has an initial 10 frames cooldown, increasing by 2 
every time a players uses the button.

• Players can tag opponents by doing a “tag” action when next to 1 opponent. Tagged players are out of 
the game and they lose. If 2 players tag each other in the same game tick, they both lose. If player A 
tags player B in the same tick when they themselves were tagged, both players A and B lose. Tag 
actions are invalid if a player is adjacent to more than 1 opponent (adjacency does not consider 
diagonals).

• The last player standing wins. 

• The game also ends after 1000 game ticks. If multiple players from the same team are alive at the end, 
but only 1 player from the other team, the 1 solo player wins and everyone else loses. If multiple players 
from both teams are still alive, everyone loses. If 2 players are alive at the end and on opposite teams, 
they tie.

13



Topic 1: Java Basics

[6] Try it out! (10 minutes)
To do:

1. Create a core package in the project.

2. Within this package, create an abstract class Player that will hold: player ID (integer), random seed 
(long), a random number generator (java.util.Random object), team ID (integer, 0 or 1), game status 
(integer, -2 = undecided, -1 = lose, 0 = tie, 1 = win), number of opponents tagged (int), position (integer)

3. The Player constructor receives and sets 1 argument, the random seed. It also sets game status to -2, and 
#opponents tagged to 0. Finally, it initialises the random generator to a new Random object, given seed.

4. The Player class has the following methods (implement their contents!): 

• void setTagged(Player other) {…}

• If this method is called, then the player was tagged and they lose. Set their game status and increase the other player’s count of 
opponents tagged.

• void setGameStatus(int newStatus) {…}

• This method should set the player’s game status to the argument received.

• void swapTeam() {…}

• This method should swap the player’s team (If 0, the team becomes 1. If 1, the team becomes 0)

• protected abstract int act();

• This method will be called when it is this player’s time to return an action. We consider actions to be integers, 0 – do nothing, 1 
– move up, 2 – move right, 3 – move down, 4 – move left, 5 – tag. This method is abstract.

14


