Java for Game Al
1: Java Basics

Raluca D. Gaina — r.d.gaina@qmul.ac.uk

Game Al Group

http://gameai.eecs.qmul.ac.uk

Queen Mary University of London

Outline

Object-Oriented Programming

O Types, Variables, Methods

O Classes, Inheritance and Interfaces

U Java Coding

‘E_Qj’ Queen Mary 1: Java Basics

University of London

1: Java Basics

Object-Oriented Programming

‘E_Qj’ Queen Mary 1: Java Basics 3

University of London

OOP

* Organizes software design around data, rather than functions and logic. Data -> classes = objects with
different properties (variables, or fields) and behaviours (methods, or functions).

Bomb
Properties Behaviours)) .)
bomblID1, ownerID1, timeTolivel, blastStrength1, position1, velocity1;
bombID bomblD2, ownerID2, timeTolive2, blastStrength2, position2, velocity2;
ownerlD
timeTolLive explode()
position tick()
velocity 500 bombs? -> too many variables!

blastStrength

* Why use classes?

Bomb bomb1 = new Bomb();
Bomb bomb2 = new Bomb();
bombl.timeTolLive -= 1;

‘E_Q_f.’ Queen Mary 1: Java Basics

University of London

OOP

* But Bomb is just one type of game object:

GameOQObject
Avatar
avatarID
BHmb Flame timeTolLive
osition
bomblID P II.
. : flamelD canKick
timeTolLive) .
osition timeTolLive ammo
P position blastStrength
owhnerlD . .
. ownerlD visionRange
velocity :
winStatus
blastStrength _
enemies
teammates
teamlID

‘E_Qj’ Queen Mary 1: Java Basics

University of London

OOP

* But Bomb is just one type of game object:

GameObject
objectID
timeTolLive
position
objectType
Avatar
Kick
Bomb canKic
Flame ammo
blastStrength
ownerlD as
velocit ownerlD visionRange
, winStatus
blastStrength /
enemies
teammates
teamlID

‘E_Q_f.’ Queen Mary 1: Java Basics

University of London

OOP

* And all objects are part of our game state, which is also an object with its own properties:

GameState GameObiject
objectID
timeTolive
position
objectType
Avatar
Kick
Somb canKic
= Flame ammo
blastStrength
ownerlD .
o ownerlD visionRange
V4 winStatus
blastStrength enemies
teammates
teaml|D

‘E_Qj’ Queen Mary 1: Java Basics

University of London

OOP

* And all objects are part of our game state, which is also an object with its own properties:

GameState

bombs: list of Bomb objects
flames: list of Flame objects
avatars: list of Avatar objects
powerUps: list of GameObject objects of type PowerUp
board: matrix of game object types

* In Pommerman, some of these variables are actually in the ForwardModel object instead, and an
instance of this object is kept within the GameState object.

* OOP is flexible to allow defining
* Objects within other objects

* Objects with common properties
* Objects with common functionality

‘E_Q_f.’ Queen Mary 1: Java Basics

University of London

OOP - Principles

 Encapsulation: Each object, its properties (and current state) and behaviours are privately held within a
class. Other objects can only modify this class if given permission to, and access to both properties and
behaviours can be strictly controlled. This is called data hiding and offers increased security and avoids
data corruption.

» Abstraction: Code grouped into class methods means that other developers need not be concerned with
the details of the implementation. This helps with making changes and additions over time.

* Inheritance: Objects can be part of a hierarchy of objects with common properties and/or behaviours.
This simplifies implementation of objects and reduces development time, as properties and behaviours
can be reused while maintaining unique objects with relationships to others.

* Polymorphism: Variables, methods and classes can all take on different forms, depending on the context
of the execution. For example, there could be two different methods with the same name, but expecting
different types of information and performing different logic. Depending on the information passed within
the program, the associated logic would be executed. Or, as a second example, the “+" sign in Java can
be used as mathematical addition if used with numbers, or for string concatenation if used with text.
This often helps reduce code duplication.

‘E_Qj’ Queen Mary 1: Java Basics

University of London

OOP - Summary

* Objects are represented as classes, entities that exist in the environment we define. They may be part of
a hierarchy of objects with common properties and/or functionality.

* Objects have properties, represented as class variables. These variables may be other objects.

* Objects can do things in the environment defined, and things can be done to the objects. These are
represented as methods (or functions) within the class.

Bomb

ownerlD
velocity > .
Variables
blastStrength !

tick()

explode()
Common methods getProperty() Methods

to control outside < setProperty()

access to variables

The object <«——

‘E_Qj’ Queen Mary 1: Java Basics

University of London

OOP - Summary

Benefits:

* Intuitive, reflective of the real world.

 Useful for large, complex or actively updated and maintained projects.
 Facilitates collaboration.

* Code reusability, scalability and efficiency.

Steps:
1. ldentify objects that will exist in the environment / that you wish to manipulate.
2. ldentify relationships between the objects.

3. Create classes for each object, with their properties and methods.

‘E_Qj’ Queen Mary 1: Java Basics

University of London

The Maze Game — OOP Review

Step 1: Highlight all nouns (green underlined), adjectives/properties/numerals referring to them (bold orange)
and verbs (italics blue). Those not important in a sentence can be ignored.

6 player run around in a 2D maze, as 2 teams of 3.

* They can change the team they are on at any time by stepping onto a button in the middle of the maze.
Stepping on the button swaps the player's team, and has an initial 10 frames cooldown, increasing by 2
every time a player uses the button.

 player can tag opponents by doing a “tag” action when next to 1 opponent. Tagged players are out of the
game and they lose. If 2 players tag each other in the same game tick, they both /ose. If player A tags
player B in the same tick when they themselves were tagged, both player A and B lose. Tag actions are
invalid if a player is adjacent to more than 1 opponent (adjacency does not consider diagonals).

* The last player standing wins.

* The game also ends after 1000 game ticks. If multiple players from the same team are alive at the end,
but only 1 player from the other team, the 1 solo player wins and everyone else loses. If multiple players
from both teams are still alive, everyone loses. If 2 player are alive at the end and on opposite teams, they
tie.

\a;,é_s’ Queen Mary 1: Java Basics

University of London

The Maze Game — OOP Review

Step 2: remove all other unimportant words and remove duplicates (or those with similar meaning e.g. change
team /swap team here). All nouns in singular form. Can structure things a little for clarity:

player -> 6 run (in) 2D maze

player -> 2 team of 3

player -> swap team

player -> step on button

button -> (middle) maze

button -> press to swap player team

button -> cooldown, increase by 2 (when used)

player -> tag player (opponent) when next to 1 opponent [+other rules]

player -> lose when tagged

player -> win if last at the end
« game -> end after 1000 ticks [+other rules for player win conditions]

‘a_é_s’ Queen Mary 1: Java Basics

University of London

The Maze Game — OOP Review

Step 3: for simplification, remove all orange items. These are important for coding the problems, but not for
an abstract representation of the OOP problem. Group bullet points by noun on the left side.

player -> run (in) maze

* player -> team

* player -> swap team
* player -> step on button

» player -> tag player (opponent)

* player -> lose
* player -> win

e button -> maze

* button -> press to swap player team

e button -> cooldown, increase cooldown

* game -> end

‘E_Qj’ Queen Mary 1: Java Basics

University of London

The Maze Game — OOP Review

Step 4: Group all elements corresponding to one noun on the left (an object!) under the same bullet points,
removing any duplicate properties or logic

* maze
* player
* run (in) maze

* team

* swap team

.« stepon-

» tag player (opponent)

e Jose, win

e button

* (in) maze

* press to swap player team <«
* cooldown
* jncrease cooldown

* game
 end

‘E_Qj’ Queen Mary 1: Java Basics

University of London

The Maze Game — OOP Review

Step 5: Find any implied properties currently not explicitly stated and add them. Some things might need to
be renamed as well.

® maze

* player
* run (in) maze -> changePosition
* position (in) maze «——

°* team

* swap team

» tag player (opponent)

* lose, win -> changeWinStatus

e winStatus «——

* button
* position (in) maze «——
* press to swap player team
* cooldown
* increase cooldown

° ame

* end

‘E_Qj’ Queen Mary 1: Java Basics

University of London

The Maze Game — OOP Review

Step 6: Group the green items in the sub-bullet points (properties/variables) and the blues
(behaviours/methods)

® maze

* player
* position (in) maze
* team
¢ winStatus
* swap team

» tag player (opponent)

* changeWinStatus
e changePosition

* button
* position (in) maze
* cooldown
* increase cooldown

* press to swap player team

° ame

* end

‘E_Qj’ Queen Mary 1: Java Basics

University of London

The Maze Game — OOP Review

Step 7: Rewrite some of the names for clarity. For methods, any green elements left are arguments, or properties modified

(can be removed and just point to with an arrow). If other methods are referred to within other methods, they can also be
removed and pointed to with an arrow.

®* Mmaze

* player
* position
* team
* winStatus
* swapTeam -
* tag (player=opponent)
* changeWinStatus
* changePosition

e button
* position

e cooldown j
* jncrease

* press

‘E_Qj’ Queen Mary 1: Java Basics

University of London

The Maze Game — OOP Review

That's it! Other interactions may be represented as well (e.g. player pressed button), but these are the key elements for
abstracting this problem with objects and their properties and behaviours. For implementation, we'll need to bring back
some of the elements removed earlier (in orange), but this gives us an idea of what happens in the program.

° mMmaze

* player
* position
* team

e winStatus

* swapTeam -
* tag (player=opponent)
* changeWinStatus
* changePosition
* button
* position
* cooldown
* increase j

* press

‘E_Qj’ Queen Mary 1: Java Basics

University of London

|1] Try it out! (10 minutes)

= Lo T

:lr_'gﬁ:j{_:b'_l:
~|E * LT
L - =
5%]1 q@é

To do:

1. What are the objects in this environment? What are their properties? What functions can they do?
What functions can others do to them? (answer in this order, to get an overall picture before details)

2. What is the relationship between the objects in the environment?

‘E_Qj’ Queen Mary 1: Java Basics

University of London

|1] Try it out! (10 minutes)

1. Find the “Week 2 — OOP.pptx" file, and create a new slide to draw your diagram.

2. Use rectangles to depict classes, write properties or behaviours within the rectangles. Use arrows to
draw relationships. PPT was not meant for class diagrams, so a rough representation is fine!

3. It's okay to not model the whole problem, as long as you gain an understanding of how this could be
modelled.

4. Note down any aspects that stand out.

Note: If you'd like to be more precise and learn more about class diagrams: https: //www.visual-
paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial / (in IntelliJ Ultimate, you can right-click
on a package -> Diagrams -> Show diagram; to see the class diagram for an existing project)

‘E_Qj’ Queen Mary 1: Java Basics

University of London

Possible Game Extensions

* Easy to implement with OOP!

* Small changes in parts of the program to modify/add/remove objects.

* More game objects: traps, pick-ups

» More player actions: jump over walls, dodge tags

* More effects: game button also makes player immune for X ticks
* Game events: randomly assign teams every X ticks

* More object instances: more buttons, different map configurations

* Game variations: change parameters to check variations (e.g. longer delays for buttons)

‘E_Qj’ Queen Mary 1: Java Basics

University of London

Alternative OOP Problem

Think about how you would model the following problem as object-oriented:

* Students in a 12-week university module have 2 assignments to deliver.

* They work in groups of 3 for each assignment, but may be part of different groups for each assignment.
* The level of activity of each student, and each group, is tracked weekly.

* The marks for the assignments are given according to a 5-point marking scheme, with 0 to 20 points
awarded for each point in the marking scheme.

* For each assignment, students assign their teammates a contribution mark, from 0 to 10.

* The module organiser wishes to know if there is a correlation between the level of activity of a student,
their contributions and their marks. They also wish to know how the overall level of activity changed
over time.

‘E_Qj’ Queen Mary 1: Java Basics

University of London

1: Java Basics

Variables, types, methods, classes

‘E_Qj’ Queen Mary 1: Java Basics 24

University of London

Java Programs

* Packages grouping classes, each class with some methods

* Variables of different types store information

* Mathematical operations and control structures modify the information
* The program controls the data flow

» Compiling a Java program = converting the source code (or programmer-readable text in your files)
into bytecode (platform-independent instructions for the Java Virtual Machine)

 Always useful, print statements:
* System.out.println (“some text”); // Prints to the console

* IntelliJ shortcut: type “sout” and press the TAB key

‘E_Qj’ Queen Mary 1: Java Basics

University of London

|2] Try it out! (5 minutes)

Let's set up an IntelliJ project for these sessions that we'll slowly build up on. IntelliJ is a Java IDE
(integrated development environment):

* Source code editing

* Build automation

* Debugging

» Java compiler

* Highlights syntax for clarity

* Highlights syntax errors while writing code

» Makes useful suggestions for completing in-progress code
* Easy navigation through code

To do:

1. Open IntelliJ / download it: https://www.jetbrains.com/idea/download/ (as a student, you can sign up
for a student pack to get access to the Ultimate version and other JetBrains software
https://www.jetbrains.com/community/education/#students)

2. Create a new project, completely empty (do not use templates, frameworks or anything else, just a
basic project).

‘E_Qj’ Queen Mary 1: Java Basics

University of London

|2] Try it out! (5 minutes)

Configure the run

Current location in project hierarchy Build project Run a configuration

View current file in project hierarchy Run a file with a main method Run with debug

Project files

‘E_Qj’ Queen Mary 1: Java Basics

University of London

Types

» Java is statically typed (type is known at compilation time) and strongly typed (variable is tied to its
type and causes errors if values assigned don't match)

* A primitive type is predefined by the language and is named by a reserved keyword. Primitive values do
not share state with other primitive values.

« Common data types (most common in green):
* Integer (int): O, 1, -55, 294
* Long (long):
* Double (double): 64-bit real number (3.14, 1.0, -44.3)
* Float (float): 32-bit floating point number (3.14f, 0.0f)
* Boolean (boolean): truth value (true or false)
* Character (char): one character (‘c’, ‘%’) — always in single quotes
* [not primitive] String: text (“hello”, “world") — always in double quotes

‘E_Qj’ Queen Mary 1: Java Basics

University of London

Variables

Variables are uniquely named locations storing values of a particular type, e.g.

* int number;

Assigning a value (called initialization if it's the first value for the variable in the scope):
* number = 5;

Declaration and assignment can be combined:
* int number = 5;

Can change type to a compatible other type through casting;:

e float realNumber = (float)number;
* This is implicit in some cases, when smaller data types are assigned to larger data types, e.g. int to double

Can be local: the variable only exists within the scope ({}) it was declared in.

Can be global: declared outside of a method, but within a class, the variable belongs to the class.

Class variables (global) can be accessed through an instance of a class:

* objectl.number = 3;

‘E_Qj’ Queen Mary 1: Java Basics

University of London

Common Class Variable Modifier Keywords

* Access to the variable can be controlled (e.g. private int number;):

Modifier |Class|Package|Subclass|World
public Y Y A Y
protected|Y b A N
no modifier Y Y N N
private |JY N N N

* final: the variable will only have one value assigned on declaration, and its value cannot be changed.
(constants)

* static: the variable belongs to the class instead of instances of a class. Its value should be retrieved
directly from the class, and not an instance of a class:

* int number = HelloClass.staticNumber;

‘E_Qj’ Queen Mary 1: Java Basics

University of London

Operations with Variables

* Numerical types can be used in mathematical operations, e.g. int otherNumber = number + 2;

* And can be on both sides of the assignment if they already have a value, e.g. number = number + 1;
(or in short: number++; or number += 1;)

* the second short form works with other operators too: - * / %

Order of operations like in math, left to right. Parentheses used to increase precedence.

The String type supports concatenation:
e String s = Ya” + Y b ” +5; // s ="ab 5"

The boolean type supports logical operations: (AND: &&, OR: ||, not equals: !=)
* boolean truthl = false && true; // false AND true = false

* boolean truth2 = false || true; // false OR true = true

* boolean truth3 = 3 == 3; // 3 equals 3 = true

* boolean truth4 = 3 != 3; // 3 not equals 3 = false

* boolean truth5 = 5 <= 3; // 5 less than or equal to 3 = false
* boolean truth6 = !truth2; // not truth2 = not true = false

truthl &= truth2; // truthl AND truth?2 = false AND true = false

‘E_Qj’ Queen Mary 1: Java Basics

University of London

|3] Try it out! (10 minutes)

1. Right click on the “src” folder in the IntelliJ project, and create a new class called “Run”

v e EC57002P-55
P B .idea

Ciri+Alt+Shift+Insert

2. Copy the following code (we'll see more about classes and methods soon!), or use the “psvm” + TAB
shortcut to create the main method between the curly brackets {} in the new “Run” file.

Project -

s ECST002P-55

main(String[] args) {

‘a_é_s’ Queen Mary 1: Java Basics

University of London

|3] Try it out! (10 minutes)

3. The code within the curly brackets in the main method here will run our maze game. However, we'll
need more concepts before we can get there. For now, let's consider a very simple scenario:

a) Only 1 player, with X and Y coordinates in the grid (2 integer variables)
b) The player has a name (a String variable)

c) The player will start at top-left position (0,0) and move diagonally towards the bottom-right, once at every
game tick.

d) When the player reaches position (5,5), the game ends.
e) We keep track of the game tick (integer variable, starting at 0) and whether the game has ended (boolean).

4. Write down how this scenario works between the curly brackets {} of the main method, printing the
following at every game tick: game tick, whether game has ended, player name, player position (X, Y).

5. Remember that command System.out.println (text); prints to the console.

6. Only use variables here, nothing more! (you will have to repeat code 5 times, yes).

main(String[] args) {

‘E_Qj’ Queen Mary 1: Java Basics

University of London

Control Structures

int 1 = 0; int 1 = 0;

while (i < 5) { do {
statement to repeat 5 times; statement to repeat 5 times;
it++; it++;

} } while (i < 5);

for (int 1 = 0; 1 < 5; i++) { if (boolean expression 1) {
statement to repeat 5 times; statement;

} continue;

for (ObjectType object: objectList) {} } else if (boolean expression 2) ({

other statement;

switch (variable) { } else {
case valuel: statement; break; other statement;
default: other statement; }

‘E_Q_f.’ Queen Mary 1: Java Basics

University of London

|[4] Try it out! (5 minutes)

1. Rewrite the code from the previous exercise to now use control structures.
2. Add a while loop which uses the gameEnded boolean variable for its condition, initialised to false.

3. Add an if statement to check whether the game has ended (X and Y have the correct values) to
update the gameEnded variable.

4. What other control structures could be used here instead?

‘E_Qj’ Queen Mary 1: Java Basics

University of London

Acknowledgements

* Part of the material inspired by:

MIT OpenCourseWare http://ocw.mit.edu
6.092 Introduction to Programming in Java

January (IAP) 2010

‘E_Qj’ Queen Mary 1: Java Basics

University of London

