9] Try it out! (20 minutes)

LlOI
1
| [
o u
I_l_
1=

| |
-
THTU15

GHEE

|
-
|

o
%Qf Queen Mary
University of London

9] Try it out! (20 minutes)

1. In the core package, create a new GameState class, which will hold a gameEnded flag (boolean, true
if the game has ended, false otherwise), a maximum number of game ticks constant, a game tick
counter (to be initialised to 0 in the ForwardModel.setup ()), the button object, and 6 player
objects in a data structure of your choice; no values to be assigned to these variables by default. Ignore
the maze (actual location of objects) for now. Add an empty default constructor.

* Add a method named copy which takes no arguments and returns a deep copy of the GameState object. You
might need to add such methods on all custom objects as well (Player, Button).

2. In the core package, create a new ForwardModel class, which will contain the functionality of our
game in several methods:

* void setup (Player|[] players, GameState gameState) {}
* Sets up the initial state of the game (within the gameState object provided), including creating the Button instance.
* Assign all variables not initialised in the constructor for Player objects: player ID, team ID and initial positions.
 Consider all positions to be integers going from 0 to 287 (16x18 2D grid, counting from top-left corner by rows towards
bottom-right corner).
* The Player class should hold a new ForwardModel variable, which is passed to them in this method (passing the
current object, this).
* void next (int[] actions, GameState gameState) {}
* lIgnore player actions for now. Just increase the game tick in the game state by 1, and apply the game rules:
* Check if any player pressed the button and trigger the correct functionality.

* Check if the game has ended. If it did, give all players their correct win status (-2 = undecided, -1 = lose, 0 = tie, 1 = win) and
change the gameEnded flag in the gameState.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

9] Try it out! (20 minutes)

3. Modify the Player class to receive a GameState object in the act method (copy of the real one).

4. Modify the Player, Button and GameState classes to implement custom toString() methods each
(the Player and Button should print their current states, and the GameState class should print nicely
formatted information about the state of the button and all players).

5. In the Run file, create an array of Player objects containing 6 instances of RandomPlayer. Then,

create an instance of the GameState and ForwardModel objects. In the GameState class, set the
maximum number of game ticks to 5 for this exercise.

6. Then, setup the initial game state and print it out (using the custom toString () method in the
GameState class).

7. Create the main game loop, which runs until the game has ended. Within the loop:
a) All players who are still alive are asked for an action, given a copy of the current game state

b) Their actions are added into an array, where index in array corresponds to player ID. If the player is out of the
game (was not asked for an action), add -1 in the array; otherwise, add their returned action into the array.

c) Call the ForwardModel.next () method with the array of player actions and the current game state.
d) Print the game state.

8. When the game has ended, print the win status of all players.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

3: Data Structures

Graphs & Trees

‘&‘_Qﬁ’ Queen Mary 3: Data Structures 18

University of London

