Java for Game Al
3: Data Structures

Raluca D. Gaina — r.d.gaina@qmul.ac.uk

Game Al Group

http://gameai.eecs.qmul.ac.uk

Queen Mary University of London

Outline

O Arrays, lists, queues and sets

U Maps, Hash vs Tree

O Trees and Graphs

U Visualisation and Testing

‘E_Qﬁ’ Queen I\/Iary 3: Data Structures

University of London

Quick Overview

* Classes are a great way to group properties and behaviours relevant to a particular object type.
* What about grouping instances of objects?
* These can quickly get unwieldy, if more than a couple are needed.

* What about keeping some structure in the data, e.g. ordering of elements, sorting based on properties?

e Solution: data structures!

* Disclaimer for today’s exercises: the code is not implemented/tested beforehand and instructions are
written from a theoretical point of view. Therefore, as in practice, some adjustments might need to be
made for everything to actually work together correctly. Updated exercises will be uploaded after the
session.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

3: Data Structures

Arrays, Lists, Queues and Sets

‘E_Qj’ Queen Mary 3: Data Structures 4

University of London

Arrays (1)

Easy to manage list of elements of fixed size (an integer, largest size of array 231-1).

In Java, treated as an object (thus passed by reference!) -> .clone() to copy.

* Shallow copy: a new array object with the same contents (clone method makes a shallow copy). This is enough if
your array contains primitives.

* Deep copy: a new array object with copies of the contents all the way down (needs custom implementation).

Can be of any type, and are declared as follows (empty brackets always indicate an array type):
* Object|] array; // a variable named “array” which contains several objects of any type
* int[] array; // a variable named “array” which contains several integers

To create an array object, we use the new keyword and specify its size:
* String[| stringArray = new String[5]; // an array holding 5 objects of type String, indexed from 0 to 4

objectl object2 object3 objectd object5
Index: 0 1 2 3 4

All objects in the array are given a default value: 0 for integers, false for boolean, "\0' for characters, null all
others. In Java, null means the lack of an object (equivalent to None in python).

Arrays are always indexed from O.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

Arrays (2)

* Values can be accessed or changed by index:
* stringArray[0] returns “hi"
« stringArray[3] = “where”; // replace the item at index 3 (previously “who”) with the new item “where”

llhill ”Of‘” llbooll llWhO” (lme” llhi" llor” llbOO” ”Where” llme”

* stringArray[-1] or stringArray[5] would cause IndexOutOfBounds errors.
* stringArray[4] = stringArray[3];

* Assigns the reference to the object at index 3 to index 4 as well; changing either object will change the other index as well.

* Arrays can be initialised at the same time as they are created:

* String|[] stringArray = new String[] {"hi", “or”, “boo”, “who", “me"};
* Array size is set based on the number of values. All values must match the type specified.

* For loops can be used to iterate through an array:
« for (inti=0; i < stringArray.length; i++) {
System.out.printIn(stringArray][i]);

}

* for (String element: stringArray) {
System.out.printIn(element);

‘E_Q_ﬁf Queen I\/Iary 3: Data Structures

University of London

Arrays (3)

» Useful operations with arrays:

* Arrays.toString(arrayVariable); // returns a String in the format [‘element1String”, “element2String”...]

* Printing an array variable directly would give you the object reference and not its contents.

* arrayVariable.length; // returns an integer, the length (or size) of the array; last index is length-1

* Arrays.sort(arrayVariable); // sorts the given array in ascending order (or use 2" argument Collections.reverseOrder())

* To use custom definitions for what an object means to be less or bigger than another, the types in the array must implement the

Comparable<T> interface.

* No multi-dimensional arrays, but you can have arrays inside other arrays to simulate this:
* double[][] matrix] = new double[3][]; // This is a 2D matrix with 10 rows of variable length each
* double[][] matrix2 = new double[3][5]; // This is a 2D matrix with 10 rows of fixed length 5

* GameObject[][][] wild; // a 3D array

‘a_Q_s’ Queen Mary

matrix2[0] 1 5 3 3 4
matrix2[1] 2 5 4 2 p)
matrix2[2]

matrix2[2][3] = 3
[row][column] or [1t dim][2" dim]...

3: Data Structures

University of London

(Generics
 Explicit specification of class types for templated classes, which allows for more robust and stable code,
with bugs due to type mis-match caught at compilation time, rather than run time.

* A template class uses capital letters (most often T, K, P) in angle brackets (<T>) to indicate that it is
happy to accept objects of different types, although potentially treat them differently:

* On the previous slide, there was one example:

java.lang
java.util.*

Compa r‘abl {
compar‘eTo)

* In the case of comparable, T is going to be the class implementing the interface, for example:

Bomb GameObject Comparable<Bomb> {

@Override
compareTo(Bomb o) {
< 0.

* More on generics: https://docs.oracle.com/javase/tutorial /extra/generics/index.html

‘e_él_g.’ Queen I\/Iary 3: Data Structures

University of London

Slide 8

RG1 Raluca Gaina, 03/11/2020

ArrayLists (1)

Back to arrays, what if we need a list without a fixed size?

The Arraylist class offers exactly this: a dynamic list where you can add and remove elements.

To create an ArrayList object (note the use of generics to specify object type accepted)
* Arraylist<Integer> arrayList = new ArrayList<>();
* ArrayList<Integer> arrayList = (ArrayList<Integer>) Arrays.asList(1, 2, 3);
* ArrayList<Integer> arrayList = new ArrayList<>(otherCollection);
* ArrayList<Integer> arrayList = new ArrayList<Integer>() {{ add(1); add(2); add(3); }};

To manipulate lists:
* arrayList.add(3); // Adds at the end of the list
* arrayList.add(0, 5); // Adds number 5 at index 0 (at the front of the list)
* arrayList.remove(2); // Removes element at index 2
* arrayList.remove(Integer.valueOf(2)); // Searches for and removes element “2"
* arrayList.get(2); // Returns the element at index 2
* arraylist.set(2, 7); // Sets the element at index 2 to be the number 7

ArrayList cannot be used with primitives, so use object equivalents for Integer, Double, Boolean etc.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

ArrayList (2)

* We can also check if the list contains an object, if the list is empty, clear the list etc.
 ArrayLists can be used with for loops just like arrays.

* Some commonly used extra functionality:
* arraylist.size(); // Returns the current size of the list
* Collections.sort(arrayList); // Returns a sorted list; like arrays, objects can have custom comparators
* arrayList.toString(); // Returns a formatted string, similar to Arrays.toString(array)
* arrayList.toArray(); // Transform to array; Arrays.asList(array) is the opposite.
* arrayList.subList(0, 5); // Returns a new ArrayList containing elements from O (inclusive) to 5 (exclusive)

The ArrayList class implements the List interface. All lists, sets and maps we'll see next implement the
Collection<T> interface (arrays do not).

https: //docs.oracle.com/javase /7 /docs/api/java/util/Collection.html|

* Arrays are cheaper to work with, because of their fixed length, but collections are more flexible.

ArrayLists are internally implemented using arrays.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

Sets

Like an ArrayList, but:
» Can only have 1 copy of each object
* Elements are not indexed

Set is an interface. Commonly used implementations are:
* TreeSet: sorted (lowest to highest), objects must implement the Comparable<T> interface.
* Set<Integer> treeSet = new TreeSet<>();
* HashSet: unordered, objects must implement equals and hashCode methods from the Object superclass.
* Set<Integer> hashSet = new HashSet<>();

Can be used in for-each loops like arrays and lists, and use similar methods as lists (add, remove etc.).

HashSets are much faster to work with than ArrayLists (speed difference noticeable even in small
programs) — if you don't need duplicates of objects or a specific ordering, always use a HashSet, e.g. for
keeping a list of possible actions and checking if an action played is within those possible.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

Maps

* Like dictionaries in Python.

* Store (key, value) pairs, where all keys must be unique. Can look up the key to get the value. Values can
be any other types, even other maps.

* Map is an interface. Commonly used implementations:

* TreeMap: sorted from lowest to highest, key types must implement the Comparable<T> interface
« Map<integer, String> treeMap = new TreeMap<>();

* HashMap: unordered, key types must implement the equals and hashCode methods from the Object superclass
* Map<Integer, String> hashMap = new HashMap<>() ;
* hashMap.put (1, “aa”); [/ If key 1 already exists, the value for the key is replaced with the new one
* hashMap.putIfAbsent (1, “aa”); // Does not replace old value if the key already exists
* hashMap.containsKey(l); hashMap.containsValue (“vv”);
* hashMap.entrySet (); hashMap.keySet(); hashMap.values()
* hashMap.remove (1) ;

* To loop over a map:
* for (Map.Entry<KeyType,ValueType> e: map.entrySet()) |
System.out.println(e.getKey())
System.out.println (e.getValue())

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

Other Common Collections

* Queue interface: first in, first out. Elements are added at the end
(tail) of the queue, and the front (head) of the queue is accessed °

ut in
first. Methods include: peek (), poll (), add (item). ﬁ h

* PriorityQueue: orders elements in the queue in ascending order.
(Often used in Dijkstra/A* implementations)

* Queue<Integer> queue = new PriorityQueue<>();

« Stack class: last in, first out. Elements are added at the top of the stack, and the
item on top is retrieved first. Methods include: peek (), pop (), push (item).

* Stack<Integer> stack = new Stack<>();

* LinkedList class: like ArrayList, but doubly-linked (front-back and back-front, so operations that iterate
through the list will go from the end that is likely closer to the index searched for). Slower than ArrayList,
but includes other useful methods, such as getFirst () and getLast (), or addFirst () and
addLast () from the Dequeue interface (double-queue).

* More detailed analysis of LinkedList vs ArrayList: https://stackoverflow.com/questions/322715/when-to-use-
linkedlist-over-arraylist-in-java
* List<Integer> linked = new LinkedList<>();

‘E_Q_ﬁf Queen I\/Iary 3: Data Structures

University of London

9] Try it out! (20 minutes)

Let’s continue building the maze game:

6 players run around in a 2D maze, as 2 teams of 3.

They can change the team they are on at any time by stepping onto a button in the middle of the maze.
Stepping on the button swaps the player’'s team, and has an initial 10 frames cooldown, increasing by 2
every time a players uses the button.

Players can tag opponents by doing a “tag’ action when next to 1 opponent. Tagged players are out of the
game and they lose. If 2 players tag each other in the same game tick, they both lose. If player A tags
player B in the same tick when they themselves were tagged, both players A and B lose. Tag actions are
invalid if a player is adjacent to more than 1 opponent (adjacency does not consider diagonals).

The last player standing wins.

The game also ends after 1000 game ticks. If multiple players from the same team are alive at the end, but
only 1 player from the other team, the 1 solo player wins and everyone else loses. If multiple players from
both teams are still alive, everyone loses. If 2 players are alive at the end and on opposite teams, they tie.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

9] Try it out! (20 minutes)

LlOI
1
| [
o u
I_l_
1=

| |
-
THTU15

GHEE

|
-
|

o
%Qf Queen Mary
University of London

9] Try it out! (20 minutes)

1. In the core package, create a new GameState class, which will hold a gameEnded flag (boolean, true
if the game has ended, false otherwise), a maximum number of game ticks constant, a game tick
counter (to be initialised to 0 in the ForwardModel.setup ()), the button object, and 6 player
objects in a data structure of your choice; no values to be assigned to these variables by default. Ignore
the maze (actual location of objects) for now. Add an empty default constructor.

* Add a method named copy which takes no arguments and returns a deep copy of the GameState object. You
might need to add such methods on all custom objects as well (Player, Button).

2. In the core package, create a new ForwardModel class, which will contain the functionality of our
game in several methods:

* void setup (Player|[] players, GameState gameState) {}
* Sets up the initial state of the game (within the gameState object provided), including creating the Button instance.
* Assign all variables not initialised in the constructor for Player objects: player ID, team ID and initial positions.
 Consider all positions to be integers going from 0 to 287 (16x18 2D grid, counting from top-left corner by rows towards
bottom-right corner).
* The Player class should hold a new ForwardModel variable, which is passed to them in this method (passing the
current object, this).
* void next (int[] actions, GameState gameState) {}
* lIgnore player actions for now. Just increase the game tick in the game state by 1, and apply the game rules:
* Check if any player pressed the button and trigger the correct functionality.

* Check if the game has ended. If it did, give all players their correct win status (-2 = undecided, -1 = lose, 0 = tie, 1 = win) and
change the gameEnded flag in the gameState.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

9] Try it out! (20 minutes)

3. Modify the Player class to receive a GameState object in the act method (copy of the real one).

4. Modify the Player, Button and GameState classes to implement custom toString() methods each
(the Player and Button should print their current states, and the GameState class should print nicely
formatted information about the state of the button and all players).

5. In the Run file, create an array of Player objects containing 6 instances of RandomPlayer. Then,

create an instance of the GameState and ForwardModel objects. In the GameState class, set the
maximum number of game ticks to 5 for this exercise.

6. Then, setup the initial game state and print it out (using the custom toString () method in the
GameState class).

7. Create the main game loop, which runs until the game has ended. Within the loop:
a) All players who are still alive are asked for an action, given a copy of the current game state

b) Their actions are added into an array, where index in array corresponds to player ID. If the player is out of the
game (was not asked for an action), add -1 in the array; otherwise, add their returned action into the array.

c) Call the ForwardModel.next () method with the array of player actions and the current game state.
d) Print the game state.

8. When the game has ended, print the win status of all players.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

3: Data Structures

Graphs & Trees

‘&‘_Qﬁ’ Queen Mary 3: Data Structures 18

University of London

Console Input/Output (10)

* Qutput is simple: System.out.println (“text”) ;

* Input needs to read an input stream (System.in) = a stream of bytes, converted to characters:

* InputStream stream = System.in;
* InputStreamReader inputReader = new InputStreamReader (stream);
* inputReader.read(); // Can read one character input at the console at a time

* BufferedReader reader = new BufferedReader (new InputStreamReader (System.in));
» Keeps a buffer of characters so you can read them in larger batches

* reader.readLine(); // Reads a full line of user console input

* reader.close(); [/ Close the reader after done to release resources

‘e_él_g.’ Queen I\/Iary 3: Data Structures

University of London

File IO (Read/Write)

* We can also read and write text from/to files, often useful in more complex applications.

* Similar to the console input.

try {
BufferedReader reader = new BufferedReader (new FileReader (“path to file”));
String line = reader.readLine();
while (line !'= null) {

System.out.println(line);
line = reader.readLine():;
}
reader.close() ;
} catch (IOException e) {
System.out.println(“file not found”);

‘e_él_g.’ Queen I\/Iary 3: Data Structures

University of London

File IO (Read/Write)

* A FileNotFoundException and |OException are raised at runtime if the file supplied does not exist, which crash
the program. We need to state how the exceptions should be handled, in a try/catch block.

» There can be multiple catch blocks. These can be empty (exception is ignored), but since exceptions occur from
unexpected behaviour, you should generally know when something goes wrong and handle it appropriately.

* FileNotFoundException is a subclass of IOException, which in turn extends superclass Exception, which
can be used instead to catch all possible exceptions that might occur in a block of code.

* The class File can be used with a file path to obtain more information about a file, e.g.:
* File file = new File(“myFile.txt”);
e file.exists();
e file.getAbsolutePath();
e file.isFile();

file.isDirectory();

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

File IO (Read/Write)

* You can also use a simpler try with resources:

try (BufferedReader reader = new BufferedReader (new FileReader (“path to file”))) {
String line = reader.readLine();
while (line !'= null) {
System.out.println(line) ;

line = reader.readLine() ;

}
} catch (IOException e) {
System.out.println(“file not found”);

* This handles the resource management automatically, without the need to close the reader at the end.
* To write text, use a FileWriter with a BufferedWriter instead.

* More on 10: https://docs.oracle.com/javase/tutorial /essential /io/

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

File IO (Read/Write)

* Some useful String operations when processing input:

* String][] splitString = String.split(" “); // Splits a text into chunks, where each chunk is separated by “ “
 String s = s.trim(); // Removes leading and trailing white spaces to clean up text

 String s = s.replace(‘a’, ‘b"); // Replaces all occurrences of character ‘a’ with ‘b’ in the text.

* String s = s.substring(3, 5); // Extracts the characters from index 3 (inclusive) to 5 (exclusive)

* boolean check = s.contains(“abcd”); // Checks if any of the characters in the argument appear in the text

* int aNumber = Integer.parselnt("5"); // Extracts the integer from a String, equivalents for other primitives

* In IntelliJ, type “s.” to see all methods that can be applied to a String, or check out documentation (double-
check your Java version): https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

Recursion (1)

The process through which a method calls itself. Such a method is called recursive.

This can help with making code more compact, but also more complex to understand.

Must be used with caution, can be deceivingly expensive to execute and can easily get stuck in infinite loops.

Classic example, calculate factorial:

Order of computations:

factorial (5)

static int factorial (int n) { factorial (4)
if (n == 1) factorial (3)
return 1:; factorial (2)
14
factorial (1)
else
return 1
* 1 — .
return (n factorial (n-1)); eturn 2%1 - 2
} return 3*2 = 6

return 4*6 = 24
return 5*24 = 120

‘e_él_g.’ Queen I\/Iary 3: Data Structures

University of London

Recursion (2)

* This concept can be extended to understand how an instance of an object can contain within itself other
instances of the same object to represent more complex data structures (graphs and trees!).

* Recursion can also be used to iterate through graphs or trees, given a single root node (depth-first
traversal, this can also be implemented with a stack data structure. Breadth-first traversal is
implemented with a queue instead):

public static void visitNode (Node node) {
for (Node otherNode: node.connections) {
if (!otherNode.wasVisited) {
visitNode (otherNode) ;

}

System.out.println (node) ;

public static void main (String[] args) {
Node root = Node.constructTree (),

visitNode (root) ;

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

Graphs

» A data structure for storing connected data.
* Can be used to represent city networks, social networks or even grids.

* Two elements: vertices (nodes) and edges (connections). A vertex represents the entity (or object), and
the edge represents the relationship between the entities (e.g. roads with distance to travel between
cities, level of friendship between people etc.).

* Weighted graphs: the edges have a cost associated (e.g. length of road).

* Directed graphs: the edges have a direction (e.g. Bob likes Ana, but Ana doesn't like Bob); adjacency
matrix is no longer symmetric in directed graphs.

* Representations:

-mm
Ana B

>

Bob I 0 0 0 S>3 Ana
B3: o : o >

Adjacency matrix:
More space, but more efficient

‘e_Q_s’ Queen Mary

University of London

Adjacency list:
Less space, less efficient

3: Data Structures

Graphs

» A path through a graph is a list of nodes, where each node is connected by an edge to the nodes before
and after itself in the path, e.g. Bob-Ana-Jay.

* An entry point is a node (vertex) which can be used as the first node in a path (by default, all nodes
can be entry points in a graph).

* A cycle is a path where exactly 1 node appears twice, at the beginning and the end, and all others
appear only once, e.g. Ana-Jay-Sue-Ana.

* A graph which contains no cycles is called acyclic.

* More information on graphs (in Java): https://www.baeldung.com/java-graphs

‘E_Q_ﬁf Queen I\/Iary 3: Data Structures

University of London

Graphs in OOP /Java

* Following OOP concepts, we only need to define one object to represent graphs: a node.

* The Node class can then hold a list of other Node objects it connects to through edges exiting the node.
* Q: Why only exiting?

* OR: A Graph class contains mapping from each node object to a list of nodes it connects to.

» Either representation is fine, and efficiency depends on specific applications and the way you need to access the
data (i.e. does the node need to know who its neighbours are?)

* If edges have costs associated with them, we can instead use a map to store connections, containing all
the nodes connected and costs to reach them. If more information is needed about an edge, we can add
an edge object and use this instead as the value in the mapping.

* We can add access methods in the Node class to add or remove connections as well (or in the Graph
class instead, depending on chosen representation).

* And that's it! We only need a list of all our nodes in the graph with connections created.

* This list of nodes can then be used in e.g. pathfinding algorithms, or other processing necessary.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

Trees

» A special type of directed graph with only 1 entry point; only 1 edge must enter any one node, but many
edges can exit the node. This turns the graph into a hierarchical structure. Think of geological trees
structures.

Leaf nodes

* Root: entry point to the tree.

* Edges: connections from one node to another, parent and child. The parent is closer to the root in the
tree hierarchy (e.g. A is parent of C and D; E is child of B).

* Leaf nodes: nodes that do not have any children.
* Binary trees: a special type of tree, where each node has exactly 0 or 2 children.
* Symmetric tree: all nodes have the same number of children. (otherwise, asymmetric)

* To implement trees in Java, the same approach as for graphs can be followed, but we only need to store
the root node (all other information can be retrieved from it).

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

|10] Try it out! (15 minutes)

1. Implement the GraphNode class to represent a graph node, with a unique ID for each node and a
toString () method that prints out its ID and the IDs of all connecting nodes.

* Formatted printing: System.out.printf ("Hi! I am %s and have %d years.”, “Joe”, 35);

* %d (integer), %f (floating point), %s (String)

2. Add a public static void main method to the GraphNode class and create the following
graph using your class:

3. Keep all nodes in an ArrayList and, after creation, loop over the list to print out each node.

\C_,Z_.S’ Queen I\/Iary 3: Data Structures

University of London

|11| Try it out! (10 minutes)

* Instead of manually creating all the nodes, let's instead create a method which reads the adjacency list
from a file and creates all the nodes automatically. Copy and paste the following into a text (“graph.txt”)
file at the root of your project (outside of the src/ directory):

e 1:2-12, 4-15
e 2:3-7,4-3
e 3:4-2
e 4:5-21
e 5
e O:
* Write a static method in your GraphNode class that takes as input (argument) the name of a file and

returns a list of GraphNode objects created based on the file. You can assume that the “:" character
separates the node ID from its edges, the “," character separates edges, and each edge is defined by a

node ID and an edge cost, separated by the “-" character.

* In the main method of the class, call this new static method. If you print out the list of objects, it
should return the exact same output as before.

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

|12|] Try it out! (20 minutes)

1. Find the “mazeGraph.txt” file, with a similar format containing a maze game graph (but: for each node, we
now specify its connection in each of the 4 directions up, right, down, left, being empty if there is no
connection there; adjust your code to be able to read this format instead, and store the information
appropriately in the node, e.g. mapping from direction to node ID instead). The first line in this file specifies
the width and height of the grid represented.

2. Add the nodes read from the file into a HashMap in the GameState class as our maze representation,
mapping from node ID to the node object.

3. In the ForwardModel .next () method, we can now apply the player actions (and check if a player is
trying to do a valid action according to our maze graph), e.g.
mazeGraph.get (playerPosition) .contains (action) — returns true if player can move in that
direction, and nextPlayerPosition = mazeGraph.get (playerPosition) .get (action);
a) If that can't be executed, the player might try to not move, or to tag another player. In the second case, we need to
check if exactly 1 opponent is neighbouring the player, and if so, apply the tagging action).

b) The actions array contains one action per player, where the index in the array corresponds to the player ID, e.g.
player ID 0 takes action at index 0. Apply all actions in the given gameState. Remember that we defined the actions
as follows previously: 0 — do nothing, 1 — move up, 2 — move right, 3 — move down, 4 — move left, 5 — tag.

c) For now, you can allow players to move on top of each other (i.e. have the same position).

4. With this in place, we can run the game! How does it work with random players?

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

|12] Additional Materials

* The “mazeGraphDraw" folder is a package containing several Java classes. Running the DrawGraph class from
this package draws an initially empty grid of a particular size (set in the main method).

* You can left-click and drag your mouse to draw lines on top of the dashed ones, which are seen as walls and cut off
the connections between the grid cells (the click point identification is a bit off, so the lines actually drawn might not
be *quite* what you intended — drawing needs to be adjusted a bit for this to be more precise).

* A right-click would remove the last drawn line segment (a 1-cell long part of the line you just drew).
* Closing the drawing window (NOT stopping the program) will print to console the graph corresponding to the grid
you've drawn.

* The text file suggested in the exercise uses this tool to generate it. Feel free to draw your own mazes of
different sizes and experiment with those too.

* In case the display is not right in your PC, adjust the parameters at the top of DrawGraph file (offsetX,
offsetY, cellSize), or the dimension of the window drawn (in the getPreferredSize method in this class).

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

3: Data Structures

Visualisation and Testing

‘E_Qj’ Queen Mary 3: Data Structures 34

University of London

Java Graphics

* You need a JFrame to draw on the screen. You can create your own class that extends from JFrame to
customize what this window will contain. Everything is held inside a Container, which can be obtained
through the getContentPane() method call from the super class. New elements can be added to this, for
example:

 getContentPane().add(new JPanel()); // Add a panel to the frame (a container itself)

« JComponent — base class that can be extended for custom drawing, by overriding the public void
paint(Graphics graphics) method.
» JButton — a button, whose functionality can be customised by adding an ActionListener

e Others:

* The Graphics object allows you to draw on the screen. Cast it to Graphics2D for more functionality.
This can be accessed in the paint method from the JComponent super class. Consider Graphics2D g:

* g.drawRect(0, 0, 5, 6); // Draws the outline of a rectangle of size 5x6 (widthxheight) at point (0,0) on the
screen.

* g.fillRect(0,0,5,6); // Draws a filled rectangle. Similar methods to draw oval.
 g.drawlLine(5,5,20,20); // Draws a line from point (5,5) to point (20,20).

* g.setColor(Color.BLACK); // See java.awt.Color, can create any custom RGBA colors with constructor
* g.setStroke(new BasicStroke(3)); // Sets the brush stroke to be width 3 for any subsequent drawings.
 g.drawString(“Hi", 5, 5); // Draws the text “Hi" at point (5,5) on the screen.

* More: https://books.trinket.io/thinkjava/appendix-b.html|

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

|13| Try it out! (10 minutes)

 Adapt the code found in the “graphToGridDraw/GraphToGridDraw.java" file to work with your
GraphNode class and fill in all the TODOs to make the code complete and correct. Derive each node's

intended position on the screen, given that its ID is encoded as follows:
ID =rXw+c,
where r is the row, c is the column and w is the width of the grid

* For each node, draw its ID in the centre of its grid cell, and draw edges around the cell if a connection in
that direction is missing.

* Running this with the given maze graph input should output something looking like this (with numbers in

the middle of the grid cells):
— -

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

Parsing & Handling Program Arguments

* We've seen this method is required in order to run a program, in at least one class:

* public static void main (String[] args)

But we've not talked about the arguments passed into this method: program arguments!

A flexible way to parameterize a program and allow variations of it to be executed.

These are given when first running a program. If running at command line, they are the texts separated
by white space following the program name, e.g.:

* java —jar mazeGame.jar true 2 random random

* args[0] = “true”, args[1] = “2", args[3] = “random” ...

In IntelliJ, these can be specified in the Run/Debug configurations:

g Lonfigurations

+ - B A F v

A Application

DrawGraph

P/ Templates

* Use String parsing operations to obtain the values (e.g. Integer.parselInt (args([1])).

‘E_Q_j’ Queen I\/Iary 3: Data Structures

University of London

|14] Try it out!

1. Draw a simple visualisation of the maze game state:

* Draw the underlying grid from the graph representation.

* Draw players that are still in the game as squares of different colours depending on their team and a number in
the middle of the square to show its playerlD. Ignore players that have already lost.

* Draw the button as a circle.

* More advanced: draw other game state information, e.g. game tick, algorithm name for each player and their
win status in a separate panel in the GUI.

2. Run the game with random players with visualisation to see what happens exactly.

3. Try out a different game state representation, e.g. a 2D array. How many things would you have to
modify to get things to work correctly? Which representation is easier to implement? Which one is more
efficient to execute? Which one do you think is easier to work with for Al algorithms?

‘E_Qj’ Queen I\/Iary 3: Data Structures

University of London

Acknowledgements

* Part of the material inspired by:

MIT OpenCourseWare http://ocw.mit.edu
6.092 Introduction to Programming in Java

January (IAP) 2010

‘E_Qﬁ’ Queen I\/Iary 3: Data Structures

University of London

