Java for Game Al
2: Java Concepts

Raluca D. Gaina — r.d.gaina@qmul.ac.uk

Game Al Group

http://gameai.eecs.qmul.ac.uk

Queen Mary University of London

Outline

v" Object-Oriented Programming

» Types, Variables, Methods

O Classes, Inheritance and Interfaces

O Java Coding

‘E_Qﬁ’ Queen I\/Iary 2: Java Concepts

University of London

Methods (1)

» Big programs are built out of small methods
* Methods can be individually developed, tested and reused
* The user of a method does not need to know how it works

* In Computer Science, this is called “abstraction”

* Are made up of a block of code with a specific function, e.g. generate power-up locations in the board in
Pommerman

* lIdentifying the different functions and splitting code up into methods makes code cleaner, more readable
and more easily maintainable

* |If something goes wrong, you can isolate the issue within specific methods and fix those without worrying about
the rest of the code.

‘e_él_g.’ Queen I\/Iary 2: Java Concepts

University of London

Methods (2)

public static main{String[] argument Method signature

)
s

* The method signature is the first line declaring the method:

System.out.printin(*hi”); Method body

* First keyword: access modifier (as before)

* Static: method belongs to the class (and not instances of the class) and can only use other static variables in
the same class, unless a specific instance is being used.

* Third keyword: return type
* Void: does not return any value
» Variable type: returns a variable of that type
* Methods only return one variable in Java. If more are needed, use collections or java.util.Pair for only 2

* A method can have 0 or any number of arguments (separated by comma, each with a type specified)

* Curly brackets define the block or scope of the method, which contains all method statements (its body).

‘e_él_g.’ Queen I\/Iary 2: Java Concepts

University of London

Methods (3)

* Method signature = the first line of the method, including keywords, its name and its arguments

* Method arguments = variables which are assumed to have some values within the method itself, and
are given these values when the method is called.

* Calling a method = processing the block of code from the method (with arguments assigned specific
values), before returning to the main code

* To call a method, use its name:
e If in the same class:

* Void return: methodName (arguments) ;
* Type return: ObjectType variable = methodName (arguments) ;
* If in other classes and not static, where variable is an object of the method’s class:
* Void return: variable.methodName (arguments) ;
* Type return ObjectType otherVariable = variable.methodName (arguments) ;

* If in other classes and static:
* Void return: VariableClass.methodName (arguments) ;
* Type return: ObjectType otherVariable = VariableClass.methodName (arguments) ;

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

|5] Try it out! (5 minutes)

1. Write a static method within our “Run” file (above the main method, but within the brackets {} for
the “Run” class).

2. This method should perform one iteration of the simple scenario we worked with before (i.e. moves the
player diagonally one step).

3. The method should return true if the game has ended, and false otherwise.

4. Integrate this method within your earlier code in the main method, replacing the parts that are now
included in the method instead.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

2: Java Concepts

Classes, Inheritance and Intertaces

‘&‘_Qﬁ’ Queen I\/Iary 2: Java Concepts 7

University of London

Classes (1) - Basics

* Defined by the keyword class. “

* The scope of a class is defined by its curly brackets {}. Everything within these brackets belongs to the
class, and can be called members of the class (variables, methods, static variables and static methods).

» Access to classes is controlled by access modifiers, similarly as with variables and methods.

 Variables hold references to objects, rather than their values (as with primitive types). If the object is
modified, all variables holding a reference to that object are also going to hold the same modified version.
Bomb bombl = new Bomb (10, 5, 2);
Bomb bomb? = new Bomb (10, 5, 2);
Bomb bomb3 = bombl;

bombl.timeTolLive --;
boolean truthl = (bombl.timeTolive == bomb3.timeTolLive) ; // True
boolean truth2 = (bombl == bomb2); // False
boolean truth3 = (bombl == bomb3); // True
« "==" compares references for objects.

* objectl.equals(object2) should be used instead to compare values. This method can be implemented on
any custom classes, and exists on the Java built-in types (e.g. String). @verride

equals(Object o) {

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Classes (2) - Basics

In Java, generally, 1 object = 1 class = 1 file.

A main method in a class allows you to run the class:

* public static void main(String[] args) {}

All programs should have 1 main method as the entry point, but other classes may have their own main
methods as well.

A class can have inner (nested) classes. These are declared within the scope of an outer class. Useful
for e.g. container classes that group several variables, but are not needed outside of the outer class.

* Quter classes can only be declared as public or package private.

* Inner classes can have any access modifier, as long as it is not higher than the outer class.
* Inner classes can be static.

* Inner classes can be accessed from outside of the outer class through the outer class.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Classes (2) — Inner Classes

SimplePlayer

In code:
Properties Behaviours
o Outer class
verbose reset
random act public class SimplePlayer {
recentlyVisitedPositions runDijkstra
depth getDirsInRangeOfBomb
distanceToEnemy isStuckPosition
pickupDistance findSafePositions
bombToWallDistance isAdjacentEnemy public static class

wallDistance maybeBomb / Somedner |
HashMap tileTypeMapping;

Inner class
. / HashMap distance;
Container

HashMap path;
Properties Behaviours }

tileTypeMapping
distance
path

"é_,é.f.’ Queen I\/Iary 2: Java Concepts

University of London

Classes (3) - Constructors

To create an object represented by a particular class (or instantiate an object, or create an instance of
a class), the keyword new is used:

* Run runObject = new Run()

* This statement is an implicit call to the constructor of the object (a special type of method).
* Constructors have no return type, and their name is always the class name.

* The default constructor:
* public Run() {}
* A class can have multiple constructors, with different types of arguments (the correct one would be
called based on the arguments given when the object is created):

public Run(int nTimes) {

Run () ; // We can call other constructors from here as well
this.nTimes = nTimes;

}

Run runObject = new Run(5);

» Keyword this refers to the object instance we are creating. It can also be used in other methods to
refer to the object members (and avoid confusion with the same variable/method names).

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Classes (4) - Packages

* Classes can be grouped into packages (= directories), and packages can be nested, for a clean logical
structure, or to separate files with similar names. The package is the first thing declared in a file.

* (lasses declared as public can be accessed by others outside the package through an import

statement, e.g. This can be handled automatically in IntelliJ by typing out the
statement using the external class, and using the shortcut ALT + ENTER.

* Classes within the same package have access to all other classes in the same package and do not
need to import them.

packages

Classes within a package

Classes outside of a package,
need to import others

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

|6] Try it out! (10 minutes)

Remember the earlier exercise game modelled as object-oriented:

6 players run around in a 2D maze, as 2 teams of 3.

* They can change the team they are on at any time by stepping onto a button in the middle of the maze.
Stepping on the button swaps the player's team, and has an initial 10 frames cooldown, increasing by 2
every time a players uses the button.

* Players can tag opponents by doing a “tag” action when next to 1 opponent. Tagged players are out of
the game and they lose. If 2 players tag each other in the same game tick, they both lose. If player A
tags player B in the same tick when they themselves were tagged, both players A and B lose. Tag
actions are invalid if a player is adjacent to more than 1 opponent (adjacency does not consider
diagonals).

* The last player standing wins.

* The game also ends after 1000 game ticks. If multiple players from the same team are alive at the end,
but only 1 player from the other team, the 1 solo player wins and everyone else loses. If multiple players
from both teams are still alive, everyone loses. If 2 players are alive at the end and on opposite teams,
they tie.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

|6] Try it out! (10 minutes)
To do:

1. Create a core package in the project.

2. Within this package, create an abstract class Player that will hold: player ID (integer), random seed
(long), a random number generator (java.util.Random object), team ID (integer, 0 or 1), game status
(integer, -2 = undecided, -1 = lose, 0 = tie, 1 = win), number of opponents tagged (int), position (integer)

3. The Player constructor receives and sets 1 argument, the random seed. It also sets game status to -2, and
#opponents tagged to 0. Finally, it initialises the random generator to a new Random object, given seed.

4. The Player class has the following methods (implement their contents!):
* void setTagged (Player other) {..}

* If this method is called, then the player was tagged and they lose. Set their game status and increase the other player's count of
opponents tagged.

* vold setGameStatus (int newStatus) {..}

* This method should set the player's game status to the argument received.
* void swapTeam() {..}

* This method should swap the player's team (If O, the team becomes 1. If 1, the team becomes 0)
* protected abstract int act();

* This method will be called when it is this player's time to return an action. We consider actions to be integers, 0 — do nothing, 1
— move up, 2 — move right, 3 — move down, 4 — move left, 5 — tag. This method is abstract.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Classes (5) — .jar Files and External Libraries

* In Java, any program can be compiled to a .jar file which can then be run via command line as:
* java —-jar file.jar [arguments]

* To build a .jar file in IntelliJ, a 2-step process to set-up:

1. File -> Project Structure -> Artifacts -> “4" -> JAR -> From modules with dependencies
main class (entry point to the program, with a main method) -> Apply -> OK

* This creates a new folder in src/ called “"META-INF", which contains only one “MANIFEST.MF" file with basic
information about the program compiled.

... => select

Note that there can be only 1 such file in the project — if this already exists, you can reuse it when creating the
artifact, or simply delete it before following this step.

2. Build -> Build Artifacts -> select the correct artifact by name, in case multiple -> Build

* This creates the actual .jar file, found in: project root/out/artifacts/artifact name jar/artefact name.jar

* This file can then be run from the command line, or imported into another project as a library to
give access to their public classes (and all of their public members).

* To import a library in IntelliJ, 2 ways:

1. Copy the .jar file in a “project root/lib/" directory in your project. Right-click the file -> Add as library

2. File -> Project Structure -> Libraries -> “+" -> Java -> Find .jar files -> OK -> Apply -> OK

* Classes from an imported library can be used with import statements as if in a different package.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Inheritance (1)

* (Classes can extend from other classes. Classes that extend are called sub-classes, while extended classes
are called super-classes. Sub-classes can access (inherits) any public or protected members of the super-
class. Explicit access is done through the keyword super.

* Sub-classes MUST provide a constructor that matches the super-class’'s constructor, if the super-class
has any constructor explicitly implemented. The call to the super constructor needs to be the first thing
called in the sub-class: super (arguments).

* Sub-classes can override methods from the super-class, by creating methods with the same signature
as in the super class, but different content.

 All classes implicitly extend from the Java super-class Object and can override its methods, such as
equals, hashCode, toString.

Limitation: A class can only extend one other class.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Inheritance (2)

* Sub-classes MUST provide an implementation of any methods declared as abstract in the super-class.
» Abstract methods declared in a class only specify the signature of the method, but not its contents.

* If a class contains any abstract methods, the class itself must be declared abstract.

* Abstract classes can not be instantiated. A sub-class must be created (non-abstract) which can then be
instantiated itself. The type of the variable holding the instance can be the abstract super-class.

* If class X extends class Y, an object of type X is also a type Y (e.g. a bomb is also a game object), but
not the other way around. Operator instanceof can be used in a boolean expression to check the type
(class) of an object (in other words, if an object belongs to a class), for example:

* bombl instanceof Bomb // true
* bombl instanceof GameObject // true
* bombl instanceof Avatar // false

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Inheritance (3)

* Remember how Bomb, Flame and Avatar are all different types of game objects with common properties:

GameObject
objectID
timeTolive
position
objectType
Bomb Flame Avatar
ownerlD ownerlD canKick
velocity ammo
blastStrength blastStrength

visionRange

‘E_Qj.’ Queen I\/Iary 2: Java Concepts

University of London

Inheritance (4)

In code:

public class GameObject {

int objectlD;

int timeTolive;
Vector2D position;
TileType objectType;

public (TileType type, int x, inty) {
this.objectType = type;
this.position = new Vector2D(x, y);
this.objectID = 0;
this.timeTolLive = 10;

‘a_,@ Queen Mary

University of London

2: Java Concepts

public class Bomb extends GameObject {

int blastStrength;
int playerld;
Vector2D velocity;

public (intx, inty, intb, int p, Vector2D v) {
super(BOMB, x, y);
this.blastStrength = b;
this.playerld = p;
this.velocity = v;

Inheritance (5)

In code:

public abstract class Player { public class SimplePlayer extends Player {

protected int playeriD;
protected long randomSeed,;

public (long seed, int pID) {
protected (long seed, int pID) { super(seed, pID);

} }

/ pUb“C ACTION (GameState gS) {

} Annotation used by the return ACTION_NULL;
compiler to check for errors

public abstract ACTION act(GameState gs);

‘E_Qﬁ’ Queen I\/Iary 2: Java Concepts

University of London

|7] Try it out! (10 minutes)

1. Continuing from the previous exercise, create a players package, and a RandomPlayer class within
the players package.

2. This class should extend from the Pl1ayer class and should have a matching constructor which calls
the super constructor.

3. This class will implement the abstract act () method and return a random integer between 0 and 5
(hint: check the Random.nextInt (int bound) method).

4. In the core package, create a Button class. This will hold: position (integer), cooldown (integer),
cooldownCounter (integer), currentlyActive (boolean). Additionally, it will implement the following
methods:

e void tick() {..}

* This method will be called once every game tick. If the button is not currently active, the cooldownCounter is reduced
until it reaches 0, at which point the button becomes active (and the cooldownCounter is reset to the cooldown value).

* void press(Player who) {..}

* This method will be called if a player steps on the button when it is active. It will call the player's swapTeam() method,
set the button to inactive, increase the cooldown value by 2, and reset the cooldownCounter to the cooldown value.

e Constructor:

* Receives the button's position, sets currentlyActive to false, the cooldown and cooldownCounter to 10.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Interfaces

« Methods are the way an object interacts with its environment. These form the interface between the
object and the environment.

* In Java, interfaces group together method signatures (without any content) to define how an object

might interact with its environment. Specific implementations depend on the object that implements
the interface. A class can implement any number of interfaces, separated by a comma.

* Interfaces can implement default behaviours for the methods, by using the keyword default.

* If a method does not have a default implementation, it MUST be implemented in classes implementing
the interface. Otherwise, it can be overridden if needed. Similar to abstract classes, but only with methods.

* Useful for objects with similar behaviours, but different properties otherwise.

ParameterSet {

setParameterValue(String param, Object value)
Object getParameterValue(String root)
ArraylList<String> getParameters()
Map<String, Object[]> getParameterValues()
Pair<String, ArraylList<Object>> getParameterParent(String parameter)

RHEAParams ParameterSet {

Map<Object, ArraylList<String>> getParameterChildren(String root)
Map<String, String[]> constantNames()

setParameterValue(String param, Object value) {

translate([1 values topLevel) {

‘E_Qj’ Queen Mary 2: Java Concepts 22

University of London

2: Java Concepts

Java Coding

‘&‘_Qﬁ’ Queen Mary 2: Java Concepts 23

University of London

Some Java/IntelliJ Tips & Tricks

e Useful Built-In Classes:

* java.lang.Math

* Math.sin (x)

* Math.cos (x)

* Math.pow(x, y)

* Math.log(x)

e Math.PI
* java.util.Pair

Pair<Typel, Type2> p = new Pair(objectl, object2);

* java.util.Random (nextInt (), nextDouble () etc.)
 https://docs.oracle.com/javase/7/docs/api/

* IntelliJ common shortcuts:
« Comments: CTRL + / or CMD + /
* Jump to method definition: CTRL + B or CMD + B
» Suggest fixes to errors: ALT + ENTER
» System.out.println: write “sout” and press TAB
* Public static void main method signature: write “psvm” and press TAB

‘e_él_g.’ Queen I\/Iary 2: Java Concepts

University of London

Best Practices (1)

1. Use meaningful names for packages, classes, methods, variables. Conventions:
a) Packages: nouns, lower case (e.g. players)
b) Classes: nouns, mixed case with first word capitalized (e.g. HelloWorld)
c) Interfaces: like classes, but preceded by “I" (e.g. IHelloWorld)
d) Methods: verbs, mixed case with first word lower case (e.g. sayHi)
e) Variables: mixed case with first word lower case (e.g. floatNumber)
f) Constants: Upper case (e.g. Pl), separated by underscore (e.g. “"MAX_ WIDTH")

2. Use indentation (1 tab/ 4 spaces recommended), with each statement on a new line.
3. Use white spaces next to mathematical operators.
4. 1 blank line that separates blocks of code helps readability.

5. Avoid String values for variables that will be checked multiple times: use constants instead to avoid
spelling errors.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Best Practices (2)

5. Comment your code:
a) // for single comment (CTRL + / or CMD + / shortcut in IntelliJ)
b) /* for block comment, may contain multiple lines */
c) [

* for method comments, to specify what it does, what arguments it receives and what it returns

*/
6. Use “TODQ" or “FIXME" keywords in comments, highlighted syntax for easy tracking.

7. Use curly-brackets for all control structures in a consistent style.

8. Split code up into methods, classes, packages. Set the lowest access level necessary for the program to
work, avoiding public if possible. Variables should be private as much as possible, with getter/setter
methods controlling the access.

9. Avoid hard-coded values in the middle of code, use variables where necessary.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Debugging

* The process of finding and correcting errors in a program.

 |n Java:

» Use print statements to track the values of variables before and after they are modified, to make sure the intended
behaviour is actually executed. Or, to track the order of method calls (e.g. super/sub classes). Or, to track control
structures behaviour (e.g. is the correct branch of an if statement accessed).

* Use if (condition) { print statement or other processing } dummy statements to check specific conditions.
* https://dzone.com/articles/50-common-java-errors-and-how-to-avoid-them-part-1
* Other online tools, e.g. http://www.pythontutor.com/java.html

* IntelliJ debugger key aspects:

* Click next to the line number to create a break point. When run in debug mode (Run -> Debug...), the program
execution will stop at the break point and allow you to inspect the current state of the environment at that point.

Console/Debugger tabs

Break point, right click to set condition to stop here

Control buttons, to
continue, step into
methods, step through
one line at a time etc.

Add more variables or statements to check state of

Variables, can extend to inspect state

Order of method calls

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Debugging (2)

» Testing software: https://www.vogella.com /tutorials/JUnit/article.html

* More on IntelliJ Debugger tool: https://www.jetbrains.com/help/idea/debugging-code.html

General steps for debugging:

1.
2.
3.

Don't make mistakes: reuse code, design your code first, follow best practices.
Find mistakes early: test code regularly; IntelliJ warnings, syntax corrections, compilation errors.

Reproduce the error: how can you repeat the error? Design a simple test scenario. Roll back to a
previously working version (version control is important!) and add changes back in one at a time to

see where it breaks. Remove things that are not needed.
Generate hypothesis: what could be going wrong?
Collect information: if X is your problem, how can you check it? -> print statements, debugger tools

Examine data: if it turns out X was indeed the problem, fix it — otherwise, back to step 4.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

I8] Try it out!

1. Revise the code written so far according to the list of best practices.

2. Try to create simple test scenarios (create RandomPlayer and Button objects in the main method
in the Run file and call their methods).

3. Use simple print statements (or the IntelliJ debugger) to make sure your implementation of the
methods in both classes does what it's supposed to.

‘E_Qj’ Queen I\/Iary 2: Java Concepts

University of London

Acknowledgements

* Part of the material inspired by:

MIT OpenCourseWare http://ocw.mit.edu
6.092 Introduction to Programming in Java

January (IAP) 2010

‘E_Qﬁ’ Queen I\/Iary 2: Java Concepts

University of London

