
Rolling Horizon NEAT
for General Video Game Playing

Diego Perez-Liebana
Queen Mary University of London

Game AI Group
London, UK

diego.perez@qmul.ac.uk

Muhammad Sajid Alam
Queen Mary University of London

Game AI Group
London, UK

m.s.alam@se16.qmul.ac.uk

Raluca D. Gaina
Queen Mary University of London

Game AI Group
London, UK

r.d.gaina@qmul.ac.uk

Abstract—This paper presents a new Statistical Forward
Planning (SFP) method, Rolling Horizon NeuroEvolution of
Augmenting Topologies (rhNEAT). Unlike traditional Rolling
Horizon Evolution, where an evolutionary algorithm is in charge
of evolving a sequence of actions, rhNEAT evolves weights and
connections of a neural network in real-time, planning several
steps ahead before returning an action to execute in the game.
Different versions of the algorithm are explored in a collection
of 20 GVGAI games, and compared with other SFP methods
and state of the art results. Although results are overall not
better than other SFP methods, the nature of rhNEAT to adapt
to changing game features has allowed to establish new state of
the art records in games that other methods have traditionally
struggled with. The algorithm proposed here is general and
introduces a new way of representing information within rolling
horizon evolution techniques.

I. INTRODUCTION

Research in General Video Game Playing (GVGP) has
become very popular in the last years, with the proliferation
of frameworks and studies around the Atari Learning Environ-
ment (ALE; [1]), the General Video Game AI (GVGAI; [2])
framework and many other benchmarks. Either from a learning
or from a planning point of view, an important body of
research has focused on generalization of game-playing agents
for multiple games. The GVGAI framework has featured in
multiple recent studies on general game playing. While its
main alternative is ALE, GVGAI provides a higher variety of
scenarios and levels per game: via the Video Game Description
Language (VGDL), games are easily extensible and a poten-
tially infinite number of games and levels can be created.

Among the most popular approaches used in GVGAI for
real-time planning, Statistical Forward Planning (SFP) meth-
ods have a distinguished position [3]. SFP techniques include
Monte Carlo Tree Search (MCTS; [4]) and Rolling Horizon
Evolutionary Algorithms (RHEA; [5]), and multiple variants
of these approaches can be found in the GVGAI literature.
Most of these methods do not use game features, some
exceptions being Knowledge-Based MCTS [6] and one of
the competition winners YOLOBOT [7]. In both cases, game
features are used to either prune branches, bias rollouts or
evaluate game states, with generally good results [8].

The objective of this paper is to dive deeper into this type
of mixed approaches, by introducing a new SFP method. We

present rhNEAT, an algorithm that takes concepts from the
existing NeuroEvolution of Augmenting Topologies (NEAT)
and RHEA. We analyze different variants of the algorithm and
compare its performance with state of the art results. A second
contribution of this paper is to start opening a line of research
that explores alternative representations for Rolling Horizon
Evolutionary Algorithms: while traditionally RHEA evolves a
sequence of actions, rhNEAT evolves neural network weights
and configurations, which in turn generate action sequences
used to evaluate individual fitness.

Background concepts are described in Section II, with a
special focus on NEAT in Section III. The proposed rhNEAT
approach is detailed in Section IV. Experiments and results are
described in Sections V and VI, before concluding the paper
in Section VII.

II. BACKGROUND

A. GVGAI

The General Video Game Artificial Intelligence (GVGAI)
framework and competition [2] focus on the application of AI
techniques for procedural content generation and game playing
in multiple games. Rather than specialising in a single game,
GVGAI fosters AI research in a collection of 2D arcade games
minimizing the use of domain knowledge. The framework
currently has more than 180 single and two-player games.

In the game planning tracks of GVGAI, agents can interact
with the game in real time to provide actions to execute at
every frame. During this thinking time, agents can access a
reduced observation of the environment, including game score,
game state (win, loss or ongoing), current time step and player
(or avatar) status (orientation, position resources and health
points). The agent is also provided with the list of available
actions and observations of other sprites. These sprites are
grouped into certain categories: non-player characters (NPC),
immovable/movable sprites, resources that can be collected,
portal sprites (that teleport, spawn or destroy other game
elements) and other sprites created by the avatar.

The agent is also provided with a Forward Model (FM),
which can reach a future state st+1 upon receiving a previous
game state st and an action a. The FM allows the imple-
mentation of planning approaches such as MCTS and RHEA,
which form the base of most methods researchers have tested



in GVGAI. For more details on GVGAI, its different tracks,
competition editions and approaches, the reader is referred to
the recent GVGAI survey [3].

B. Statistical Forward Planning Methods

Statistical Forward Planning (SFP) refers to a family of
methods that use a Forward Model (FM) to simulate the effect
of actions executed in copies of the current game state. This
term is coined to gather under the same umbrella two family
of methods that use FM sampling for decision making: tree
search (predominantly MCTS) and RHEA variants.

1) Monte Carlo Tree Search: MCTS is a well known game
playing algorithm that builds an asymmetric tree in memory,
balancing exploration of different actions and exploitation of
the most promising ones. MCTS has been widely used in
multiple domains [4], and at present stands as one of the top
approaches for GVGAI [8]. The algorithm iterates through
the following four steps until a decision budget expires: tree
selection (where the tree is navigated balancing exploration
and exploitation), expansion (a new node is added to the tree),
simulation or rollout (a Monte Carlo simulation that chooses
actions at random until a determined depth is reached or the
game is over) and backpropagation (which updates the average
reward of each traversed node with a value assigned to the state
found at the end of the rollout).

2) Rolling Horizon Evolutionary Algorithms: RHEA [5]
evolves individuals represented by a sequence of actions at
every game tick. Using the FM, each action in the sequence
is iteratively used to advance the game state st to st+1 until
the last action of the individual takes the game to a state that
is evaluated. Once the decision budget is exhausted, the first
action of the best individual is played in the game for that
frame. RHEA has been widely used in General Video Game
Playing [9] [10] [11] and in some cases it has been proven
superior to MCTS, winning several editions of the GVGAI
competition [3].

C. Neuroevolution in Games

NeuroEvolution (NE), the evolution via genetic algorithms
or evolutionary strategies of the weights and connections
of a Neural Network (NN), has been extensively used in
games [12]. Stanley and Miikkulainen proposed one of the
most popular NE systems: NeuroEvolution of Augmented
Topologies (NEAT) [13]. NEAT uses a direct encoding,
where a binary vector determines if a connection between
two neurons exists or not, to evolve both the weights and
the topology of a NN. Later, Stanley et al. [14] evolved
game playing agents in real-time for the game Neuroevolving
Robotic Operatives (NERO), where the player trains a group
of combat robots to play against other players’ teams. In [15],
Gauci et al. propose HyperNEAT, an algorithm that evolves
topology and parameters of a NN to play checkers using an
indirect encoding, which extends the representation of the
chromosome to also include the NN topology, following a
partial connectivity pattern. The authors show that the method

was able to extract geometric information from the board that
smoothed the learning of the network.

Particularly relevant to this study are the applications of
NE to general (video) game playing. In [16], Reisenger et
al. successfully apply a co-evolutionary algorithm for NEAT
in the General Game Playing competition [1] framework
to evolve function approximation for game state evaluators.
Hausknecht et al. [17] introduced HyperNEAT-GGP to play
two Atari games, Asterix and Freeway. The approach consisted
in analyzing the raw game screen to detect objects that were
used as input features for HyperNEAT, using the game score as
fitness. This approach was later extended in [18] to a set of 61
Atari games, comparing HyperNEAT and NEAT approaches
in this learning task. Finally, Samothrakis et al. [19] used
Separable Natural Evolution Strategies to evolve a NN that
learns to play 10 GVGAI games, showing that the methods
proposed were able to learn most of the games played.

III. NEAT

In NEAT, weights evolve following the established conven-
tions in NeuroEvolution, using genetic operators as selection,
crossover and mutation. The crossover operator generates off-
spring from two parents. In order to guarantee the appropriate
crossing of individuals, NEAT uses innovation numbers. These
numbers are incremental values added to each connection
and they act as indicators for when a gene appeared in the
evolution process. Innovation numbers play a crucial role in
the crossover operator as NEAT needs to be able to recombine
genes with different topologies [20].

The offspring is formed either through uniform crossover,
by randomly choosing matching genes, or through blended
crossover, where the weights of two matching genes are aver-
aged [21]. When two parents are selected to form an offspring,
their genes are lined up based on their innovation numbers.
Genes match if they have the same innovation number. Genes
that do not match are labelled as disjoint (present in one parent
but not the other) or excess genes (those outside the range of
a parent’s innovation number). Dealing with these disjoint and
excess genes is done by accepting genes directly from the more
fit parent. In the case where both parents have equal fitness
both their disjoint and excess genes are taken.

Mutations in NEAT can affect weights and the topology of
the network in different ways, each one of them under certain
probabilities:

• Mutate link (µt): creates a new link between two nodes.
• Mutate node (µn): picks an existing random connection

and splits it into two new connections with a new node
in the middle; the original connection is disabled and the
weight from the first node to the new middle node is
set to 1.0, while the connection from the middle to the
second node is set to the original connection weight.

• Mutate weight shift probability (µws): alters the weight
of a connection, shifted by a value picked uniformly at
random factor in the range [−Ws, Ws].



Figure 1. Summary of an individual evaluation.

• Mutate weight random probability (µwr): replaces the
weight of a connection by a value picked uniformly at
random, in the range [−Wr, Wr].

• Mutate toggle link probability (µtl): toggles a connection
from enabled to disabled, and viceversa.

As can be seen, there are several types of mutations that
can occur to the individuals. NEAT mutations, particularly the
topological ones, form the basis for complexification of the
evolved networks. Since smaller networks optimise faster and
adding new mutations to genes can initially result in lower
fitness scores, it can result in newer topologies having a small
chance of surviving more than one generation. This can lead
to losing innovation that could prove to be important in the
future. In order to prevent this, NEAT uses speciation,
which relies on the principle of populations within specific
species competing against each other instead of competing
against the entire population as a whole. This provides time
for different topological innovations to optimise before they
compete against other species. On each generation individuals
are firstly organized into species according to a distance
function. This function, shown in Equation 1, is a simple linear
combination of the number of excess, disjoint genes and the
average weight difference W of matching genes [13].

δ =
c1Excess

N
+
c2Disjoint

N
+ c3 ·W (1)

The coefficients c1, c2 and c3 can be used to tune the
impact of these 3 variables. N is the number of connections
from the larger genome, which is normalized to 1 if there
are less than 20 connections. Each species is represented by
a randomly chosen genome from that species in the previous
generation. Individuals are compared to these representatives
in the distance function. A new individual is placed in the
first species with a distance as determined by Equation 1,
respecting a maximum threshold CP . If the genome is not
able to find a suitable species, a new species is created with
this new individual as its representative.

IV. ROLLING HORIZON NEAT FOR GVGAI
Rolling Horizon NEAT (rhNEAT) combines the statistical

forward planning capabilities of RHEA with NEAT’s ability
to select actions based on game state features used as input

Table I
RHNEAT PARAMETERS AND THEIR VALUES.

Parameter Name Value
P Population Size 10
L Rollout length 15
R Individuals discarded per generation 20%
CP Speciation Threshold 4
c1 Excess coefficient 1.0
c2 Disjoint coefficient 1.0
c3 Weight difference coefficient 1.0
µl Mutate Link Probability 0.5
µn Mutate Node Probability 0.3
µws Mutate Weight Shift Probability 0.5
Ws Weight Shift Strength 0.4
µwr Mutate Weight Random Probability 0.6
Wr Weight Random Strength 1.0
µtl Mutate Toggle Link Probability 0.05
FMb Forward Model calls budget 1000

for the NN. The approach is summarized as follows: rhNEAT
evolves a population of individuals encoding nodes and links
for a NN. The input of these NNs are game state features, and
their output is a suggested action to apply in the given game
state. Each NN is evaluated by rolling the game state forward
for L steps using the NN’s output as actions. The value of
one or more visited game states (see Section V) is assigned as
fitness. Finally, rhNEAT returns the action suggested by the
best individual (the NN with the highest fitness). Section IV-A
explains rhNEAT in more detail and Section IV-B describes
the inputs and outputs used for this study.

A. rhNEAT

Rolling Horizon NEAT (rhNEAT) is configured to have a
fixed population size of P individuals. NEAT starts with the
simplest network first to incrementally make it more complex
through evolution. rhNEAT individuals are initialized with
only a representation of the input and output nodes, and
an empty connection map. As the NN evolves (selection by
randomly choosing matching genes and uniform crossover),
new connections are created, and their innovation number
is updated. If using speciation, individuals are grouped into
species as described in Section III.

One of the key characteristics of rhNEAT is the use of a
Forward Model. An individual is evaluated by performing a
rollout: the NN encoded is given features φ(Si) extracted from
the game state Si as input, and the action output ai is used to
roll the game state forward; this process is repeated for L steps
(or until the game is over), see Figure 1. Each visited state can
be evaluated using a simple function, described in Equation 21.
The fitness f of the individual can be computed by considering
the evaluation (or reward) of the last state, or a combination of
the rewards observed in the states visited, possibly discounted.
Different configurations are experimented with in this paper
to compute this evaluation (see Section VI-B).

1This evaluation function is used by all rhNEAT configurations tested in
the experiments of this paper, as well as by the RHEA and MCTS agents.



h(s) =


106 win = True
−106 win = False
game score otherwise

(2)

The individuals in the population (or in each species, if
using speciation) are sorted based on their fitness, and a
percentage R of the lowest scoring members are discarded
at every generation. If speciation is used and a species has
no individuals or only the representative left, said species is
removed from the algorithm.

Once the computational budget is over, the algorithm selects
the individual with the highest fitness and runs its network
forward using features for the current game state as input.
The output action is then returned to be played in the game.
rhNEAT will then receive another call in the next frame
to select an action and continue playing. At this stage, the
population evolved in the previous game tick is initialized
again to start a fresh evolutionary process. The algorithm can
continue evolution from the previous population, an approach
referred to as population carrying in this paper; the
effects of keeping the population from one frame to the
next are explored in Section VI-A. All tunable parameters of
rhNEAT and their selected values are included in Table I.

B. Input and outputs

Unlike RHEA, rhNEAT requires game state inputs to evalu-
ate an individual. The following game features are employed:

• Avatar x, y position, normalized in [0, 1].
• Avatar x, y orientation.
• Avatar’s health points, in [0,Mhp], where Mhp is the

maximum health points achievable in each game.
• Proportion of up to three resources r1, r2, r3 gathered by

the avatar, where each ri is normalized in [0, 20].
• Distance d and orientation o to the closest instance of a

sprite of the following categories:
– d and o to the closest NPC sprite.
– d and o to the closest Immovable sprite.
– d and o to the closest Movable sprite.
– d and o to the closest Resource sprite.
– d and o to the closest Portal sprite.
– d and o to the closest sprite produced by the avatar.

Distances are normalized in [0,Md], where Md is the
maximum possible distance in a game level. Orientation
is normalized in [−1, 1], where 0 represents that the
distance vector to the sprite is aligned with the avatar’s
orientation and −1 when the sprite is in the opposite di-
rection to the avatar’s orientation. o gradually progresses
to 1 with degrees to the right and to −1 to the left (i.e. 90
degrees to the right corresponds to a value of 0 = 0.5).

Health points, resources, distances and orientations to the
different sprites are only considered if such features exist
in the game (i.e. some games don’t have NPCs, or health
point systems), in order to reduce the input size of the
network. However, in GVGAI games, it is possible that some
observations do not appear before a certain frame (for instance,

Table II
SUMMARY OF RESULTS SHOWING, FOR EACH APPROACH, AVERAGE WIN

RATE (AND STANDARD ERROR) IN THE 20 GAMES, THE NUMBER OF
GAMES IT ACHIEVED THE HIGHEST POSITIVE WIN RATE IN THE SUBSET
(INCLUDING THE ABSOLUTE HIGHEST, I.E. NO TIES, COUNT), AND THE

NUMBER OF GAMES IN WHICH IT ACHIEVED THE HIGHEST SCORE.

Algorithm Win Rate
(std err)

Highest > 0
win rate

(absolute)

Highest
Score

A
bl

at
io

ns baseline rhNEAT 15.54% (6.13) 0 (0) 0
rhNEAT(+sp) 22.69% (7.01) 2 (1) 2
rhNEAT(+cp) 30.45% (7.93) 2 (2) 6

rhNEAT(+sp,+cp) 36.5% (8.52) 13 (12) 12

R
ew

ar
ds rhNEAT 36.5% (8.52) 8 (6) 12

rhNEAT-acc 35.15% (8.12) 9 (7) 5
rhNEAT-accdisc 34.2% (8.14) 3 (2) 4

Fi
tn

es
s rhNEAT 36.5% (8.52) 10 (8) 11

rhNEAT-lr 35.25% (8.72) 5 (4) 3
rhNEAT-avg 31.55% (8.10) 5 (2) 6

A
ll

rhNEAT 36.5% (8.52) 3 (2) 1
RHEA 44.8% (8.89) 2 (0) 0
MCTS 42.65% (9.56) 6 (3) 4
SotA 51.21% (8.72) 13 (10) 16

enemies that are spawned in Aliens are not visible in the first
few frames). Carrying the population from one frame to the
next is not straightforward when two consecutive frames have
different input sizes. The approach taken in this implementa-
tion is to reinitialize the whole population when this (rarely)
happens. The network output, however, is kept constant during
the game, set to the number of actions available in the game2.

V. EXPERIMENTAL SETUP

The objective of the experiments presented in this paper is
to evaluate the performance of different variants of rhNEAT, as
well as to ascertain how specific components of the algorithm
contribute towards victory rate and average score. Experiments
were run in 20 games of the GVGAI framework, the same
ones used in previous studies [10] [22], which represent an
assorted selection of environments in terms of difficulty and
game types. Each game is run 100 times, testing 20 repetitions
on each of their 5 levels.

A decision budget is given to rhNEAT that determines when
evolution should stop before providing an action to be played
in the game. This decision budget can take multiple forms,
from a number of generations to actual wall time. The option
chosen for this paper is to limit the number of usages of the
Forward Model, so results are independent from the machine
specifications where they are run and can also be compared
with other algorithms. In order to provide a fair comparison
with vanilla versions of other methods, rhNEAT is configured
to run with a population size of 10 individuals, a rollout length
of 15 and a budget of 1000 Forward Model calls.

Three sets of experimental studies have been conducted
to explore rhNEAT variants: first, we explore the effect of

2Some GVGAI games - not used in this study - may also change the number
of available actions mid-game. For those cases, reinitializing the population
would also be advisable.



Figure 2. Win rates per game of different rhNEAT variants: basic rhNEAT, with population carrying (+cp), speciation (+sp) and with both (+cp,+sp).

different components in the algorithm, namely speciation
and population carrying; second, we explore alternatives for
calculating and assigning individual fitness, using the best
variant from the first set of experiments as baseline; and third,
we compare the best overall rhNEAT agent with other SFP
methods and RHEA state of the art3.

VI. RESULTS AND DISCUSSION

A. rhNEAT Additions

The objective of this set of experiments is to determine how
incorporating certain components into rhNEAT (speciation and
population carrying, as described in Section IV) influences
the performance of the algorithm. In order to differentiate
the variants, we refer to baseline rhNEAT as the version
of the algorithm that does not use any of these compo-
nents; rhNEAT(+cp) refers to the version of the algorithm
with population carrying; rhNEAT(+sp) adds speciation; and
rhNEAT(+sp,+cp) incorporates both enhancements. All vari-
ants assign the value of the state found at the end of the rollout
as the individual fitness.

The results clearly show that using speciation and popula-
tion carrying increases both win rate and game scores. The first
row group in table II, while it’s clear that baseline rhNEAT
performs poorly with only 15.54% victory rate, it’s interest-
ing to observe the difference in performance when the two
components are added. There is an increase in performance
to 22.69% observed when speciation is added, rhNEAT(+sp),
while adding population carrying makes it further increase
to 30.45%. Even more, the configuration with both features
achieves a 36.5% victory rate, with the highest number of best
win rate across games (13, 12 as the absolute best agent) and
obtaining the best score in 12 out of the 20 games tested. These
results suggest that the algorithm benefits from having differ-
ent niches of weights in the population of rhNEAT, but even

3https://github.com/GAIGResearch/rhNEAT/ includes all code and results.

more when the complete population is kept between frames.
Although this may not be surprising, it’s important to highlight
that, in GVGP, resetting the entire population may be beneficial
in some circumstances, in order to adapt to drastic changes
in the game mechanics or the appearance/disappearance of
features used as input for rhNEAT.

Figure 2 shows the win rate for each one of the games
and, in most cases, rhNEAT(+sp,+cp) achieves the highest
victory rate, with a similar ranking of the performance of
the algorithms as observed in Table II. It’s interesting to
highlight, like in most GVGAI studies, that the performance
is very different across the distinct games, with some of them
achieving close to 100% win rate (Infection, Aliens, Butterflies,
Intersection) and others close or equal to 0% (Dig Dug,
Lemmings, Roguelike, Camel Race, Crossfire). A plausible
explanation for this division is that the former games have
a richer reward landscape, while the latter are either deceptive
(in the case of Lemmings), sparse (Camel Race) or the games
are particularly long (Dig Dug and Roguelike). However, as
highlighted below, the little improvement in these hard games
is one of the strengths of rhNEAT.

B. Reward and Fitness Alternatives

This section presents alternatives to how fitness is assigned
to individuals. All variants use the best algorithm from the
previous experiment (with speciation and population carrying).

1) rhNEAT Rewards: The first part of this experiment aims
to analyze which procedure to compute the reward of a given
rollout provides better results. Three different versions are
compared: rhNEAT uses the value of the game state at the
end of the rollout as reward. rhNEAT-acc and rhNEAT-accdisc
provide an accumulated sum of the values of all states visited
during the rollout, with discount factor γ = 0.9 for rhNEAT-
accdisc. This experiment is meant to compare short and long-
term sight variants of rhNEAT, within the same rollout length.



Figure 3. Win rates per game of different rhNEAT variants: using the evaluation of the last state of the rollout (rhNEAT), accumulated through all states
visited (-acc) and accumulated and discounted (-accdisc).

There is not much difference between rhNEAT and rhNEAT-
acc, as they both achieve a similar highest win rate counts.
This suggests that rating individuals attending to either the
evaluation of the state found at the end of the rollout or
considering all the intermediate states does not impact per-
formance significantly in terms of win rate. However, if the
accumulated sum is discounted, the results show a drop in
performance. Although the overall win rate is not significantly
different to the other two options (34.2% versus 35.15% for
rhNEAT-acc and 36.5% for rhNEAT - see second row group
in Table II), the number of games where rhNEAT-accdisc
achieves the highest win rate is clearly lower (3 versus 9 and 8
respectively). Figure 3 sheds some light into this discrepancy:
per game, rhNEAT-accdisc tends to achieve marginally worse
results in most games, with rhNEAT and rhNEAT-acc normally
achieving higher win rates. Given that rhNEAT obtains a
higher count of games with the highest achieved scores,
the version of the algorithm that only uses the final state’s
evaluation is considered to be better (and therefore used in
the comparison against the alternative versions of rhNEAT and
other approaches).

2) rhNEAT Fitness: This experiment set focuses on the
capacity to adapt to potential changes of the environment.
While rhNEAT reward provides a reward for a rollout, rhNEAT
Fitness explores how the individual fitness is computed form
the reward. This reward can be assigned directly as the
individual fitness (rhNEAT variant) or, as individuals are likely
to be evaluated multiple times during consecutive frames,
averaged across. rhNEAT-avg sets as individual fitness the
arithmetic average of all the rewards seen by that individual.
rhNEAT-lr defines a learning rate (α = 0.2) so that, every time
the individual receives a new fitness fi, the individual fitness
becomes F = F + α × (fi − F ). While rhNEAT focuses on
the last experience only, the fitness of rhNEAT-avg considers

all past experiences and rhNEAT-lr gives more weight to the
more recent ones.

The results for different individual fitness are described in
the third row group of Table II. Computing the fitness as
an exact average of the different rewards obtained by the
individual (rhNEAT-avg) seem to provide a lower win rate
than the other two variants. This version is the one that gives
less weight to the most recent evaluations, indicating that
the algorithm benefits more from considering evaluations in
the most recent game frames. One advantage is the potential
adaptability of rhNEAT to changing situations in the environ-
ment. One disadvantage could be less robustness to stochastic
environments. The average win rates are very similar between
rhNEAT and rhNEAT-lr, but the former achieves the highest
victory rate and score in more games than the latter, thus
rhNEAT is the configuration selected for the next comparison.

Figure 4 shows the distribution of win rates per game for
this setting. An interesting observation can be made about the
games where there’s an important difference in performance.
rhNEAT-lr clearly outperforms rhNEAT in Seaquest and Sur-
vive Zombies, games where the density of points is high. A
reasonable explanation for this could be that using a learning
rate makes the algorithm favour those individuals that behave
well with a rich reward landscape. rhNEAT behaves better
in games like Plaque Attack and Crossfire, where rewarding
events (positive and negative) are more spread out across the
game. Assigning the last rollout reward as the fitness of the
individual seems to make rhNEAT more adaptable.

C. Comparison with Other Algorithms

In order to analyze how rhNEAT compares to other methods
used in the literature, the last set of experiments compares the
results on the same games with those from sample GVGAI
versions of RHEA and MCTS, using the same population,
individual/rollout length, budget and state evaluation functions.



Figure 4. Win rates per game of different rhNEAT variants: individual fitness assigned as the last evaluation of the individual (rhNEAT), averaged for all
evaluations (-avg) or updated with a learning rate (-lr).

Exploration constant for MCTS is set to
√
2. Additionally,

rhNEAT is compared with RHEA state-of-the-art (SotA) re-
sults, as described in [23].

Figure 5 and the last rows of Table II compare the best
version of rhNEAT (with speciation, population carrying, and
the last game state value used as individual fitness) with
MCTS, RHEA and state-of-the-art results obtained by RHEA.
In general, the performance of rhNEAT is below that of the
other comparable methods, which achieve 6 (for MCTS) and
8 (for RHEA) percentage points above rhNEAT. SotA achieves
the highest standards, as it can be expected. However, it is
important to note that SotA aggregates results from multiple
configurations of RHEA: while this comparison is illustrative,
SotA represents an upper bound not ever achieved by any
single algorithm in particular. In any case, it is worthwhile
highlighting that rhNEAT achieves the highest positive win
rate in three games (Intersection, Crossfire and Camel Race),
beating RHEA state of the art and MCTS in the last two of
the games; these are games with sparse rewards, where game
playing agents have normally struggled to play well [11].
Results are also comparable in another 4 games (right side
of the plot in Figure 5) where all algorithms achieve high
victory rates. rhNEAT performs particularly worse than RHEA
in Chopper and Escape, which can be attributed to the high
number of sprites of the same type present in these games.
A more curated feature selection could potentially improve
results in this type of games.

VII. CONCLUSIONS

This paper introduces rhNEAT, a new Statistical Forward
Planning (SFP) algorithm that combines the concepts of
Rolling Horizon Evolutionary Algorithms (RHEA) and of
NeuroEvolution of Augmented Topologies (NEAT), and tests
it in a variety of games from the General Video Game AI
(GVGAI) corpus. The algorithm receives game features as

input for a neural network (NN) that outputs one of the
possible game actions. The architecture and weights of the NN
are evolved with an evolutionary algorithm. Each individual
(or NN configuration) is assigned a fitness by rolling the
game forward, applying the actions dictated by the NN given
the input features of each state, until the end of the rollout
is reached and the final game state is evaluated. The paper
compares different configurations for rhNEAT and analyzes
their performance across 20 GVGAI games.

The best rhNEAT variant out of those explored in this
paper uses speciation, population carrying, and assigns the
value of the last game state reached in the rollout as the
fitness of the individual. Results show that rhNEAT achieves
a lower overall win rate than other SFP methods like Monte
Carlo Tree Search and RHEA, although it is able to obtain
better results than the state of the art in two games that are
normally hard for this kind of methods. We believe that this
result showcases the potential of this method, deserving more
investigation in the future. One possibility for future work is to
explore different and/or changing learning rates for rhNEAT-
lr, a variant that showed good performance. Another possible
avenue is to dynamically alternate between different rhNEAT
settings depending on the game state and the perceived reward
landscape, as results showed that different variants seem to
perform differently depending on these factors.

The literature review on NEAT variants is extensive [12]
and the present work only touches the surface of it. A further
possibility could be to explore indirect representations such
as Compositional Pattern Producing Networks (CCPNs) or
HyperNEAT, as well as other methods for population con-
trol [24] or Convolutional layers to extract features from the
game screen. Finally, the paradigm of combining general game
features with forward planning can be extended to other meth-
ods, such as Grammatical Evolution [25], Tangled Program



Figure 5. Win rates per game for rhNEAT, MCTS, RHEA and state of the art results for rolling horizon methods.

Graphs [26] or different variants of Genetic Programming.

ACKNOWLEDGMENTS

This work was funded by the EPSRC Centre for Doc-
toral Training in Intelligent Games and Game Intelligence
(IGGI) EP/L015846/1. This research utilised Queen Mary’s
Apocrita HPC facility, supported by QMUL Research-IT.
http://doi.org/10.5281/zenodo.438045.

REFERENCES

[1] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the aaai competition,” AI magazine, vol. 26, no. 2, pp. 62–62, 2005.

[2] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Couëtoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 general
video game playing competition,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 8, no. 3, pp. 229–243, 2015.

[3] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and
S. M. Lucas, “General Video Game AI: A Multitrack Framework for
Evaluating Agents, Games, and Content Generation Algorithms,” IEEE
Transactions on Games, vol. 11, no. 3, pp. 195–214, 2019.

[4] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A Survey
of Monte Carlo Tree Search Methods,” in IEEE Trans. on Computational
Intelligence and AI in Games, vol. 4, no. 1, 2014, pp. 1–43.

[5] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, “Rolling horizon
evolution versus tree search for navigation in single-player real-time
games,” in Proceedings of the 15th annual conference on Genetic and
evolutionary computation, 2013, pp. 351–358.

[6] D. Perez, S. Samothrakis, and S. Lucas, “Knowledge-based fast evolu-
tionary mcts for general video game playing,” in 2014 IEEE Conference
on Computational Intelligence and Games, 2014, pp. 1–8.

[7] T. Joppen, M. U. Moneke, N. Schröder, C. Wirth, and J. Fürnkranz,
“Informed hybrid game tree search for general video game playing,”
IEEE Transactions on Games, vol. 10, no. 1, pp. 78–90, 2017.

[8] D. Perez-Liebana, S. M. Lucas, R. D. Gaina, J. Togelius, A. Khalifa, and
J. Liu, General Video Game Artificial Intelligence. Morgan & Claypool
Publishers, 2019, vol. 3, no. 2, https://gaigresearch.github.io/gvgaibook/.

[9] R. D. Gaina, J. Liu, S. M. Lucas, and D. Pérez-Liébana, “Analysis
of vanilla rolling horizon evolution parameters in general video game
playing,” in European Conference on the Applications of Evolutionary
Computation. Springer, 2017, pp. 418–434.

[10] R. D. Gaina, S. M. Lucas, and D. Pérez-Liébana, “Rolling Horizon
Evolution Enhancements in General Video Game Playing,” in IEEE
Computational Intelligence and Games (CIG), 2017, pp. 88–95.

[11] ——, “Tackling sparse rewards in real-time games with statistical
forward planning methods,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 1691–1698.

[12] A. Baldominos, Y. Saez, and P. Isasi, “On the automated, evolutionary
design of neural networks: past, present, and future,” Neural Computing
and Applications, pp. 1–27, 2019.

[13] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[14] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neu-
roevolution in the nero video game,” IEEE transactions on evolutionary
computation, vol. 9, no. 6, pp. 653–668, 2005.

[15] J. Gauci and K. O. Stanley, “Autonomous evolution of topographic
regularities in artificial neural networks,” Neural computation, vol. 22,
no. 7, pp. 1860–1898, 2010.

[16] J. Reisinger, E. Bahceci, I. Karpov, and R. Miikkulainen, “Coevolving
strategies for general game playing,” in 2007 IEEE Symposium on
Computational Intelligence and Games. IEEE, 2007, pp. 320–327.

[17] M. Hausknecht, P. Khandelwal, R. Miikkulainen, and P. Stone,
“Hyperneat-ggp: A hyperneat-based atari general game player,” in
Proceedings of the 14th annual conference on Genetic and evolutionary
computation, 2012, pp. 217–224.

[18] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, “A neuroevo-
lution approach to general atari game playing,” IEEE Trans. on CI and
AI in Games, vol. 6:4, pp. 355–366, 2014.

[19] S. Samothrakis, D. Perez-Liebana, S. M. Lucas, and M. Fasli, “Neu-
roevolution for general video game playing,” in 2015 IEEE Conference
on Computational Intelligence and Games (CIG), 2015, pp. 200–207.

[20] N. J. Radcliffe, “Genetic set recombination and its application to neural
network topology optimisation,” Neural Computing & Applications,
vol. 1, no. 1, pp. 67–90, 1993.

[21] A. H. Wright, “Genetic algorithms for real parameter optimization,” in
Foundations of genetic algorithms. Elsevier, 1991, vol. 1, pp. 205–218.

[22] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “General Win
Prediction from Agent Experience,” in Computational Intelligence and
Games (CIG), 2018 IEEE Conference on, 2018, p. to appear.

[23] R. D. Gaina, S. Devlin, S. M. Lucas, and D. Perez-Liebana, “Rolling
Horizon Evolutionary Algorithms for General Video Game Playing,”
arXiv:2003.12331, 2020.

[24] A. Baldominos, Y. Saez, and P. Isasi, “Evolutionary convolutional neural
networks: An application to handwriting recognition,” Neurocomputing,
vol. 283, pp. 38–52, 2018.

[25] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions
on Evolutionary Computation, vol. 5, no. 4, pp. 349–358, 2001.

[26] S. Kelly and M. I. Heywood, “Multi-task learning in atari video games
with emergent tangled program graphs,” in Proceedings of the Genetic
and Evolutionary Computation Conference, 2017, pp. 195–202.


