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Abstract

Pommerman is a complex multi-player and partially observ-
able game where agents try to be the last standing to win. This
game poses very interesting challenges to AI, such as collab-
oration, learning and planning. In this paper, we compare two
Statistical Forward Planning algorithms, Monte Carlo Tree
Search (MCTS) and Rolling Horizon Evolutionary Algorithm
(RHEA) in Pommerman. We provide insights on how the
agents actually play the game, inspecting their behaviours to
explain their performance. Results show that MCTS outper-
forms RHEA in several game settings, but leaving room for
multiple avenues of future work: tuning these methods, im-
proving opponent modelling, identifying trap moves and in-
troducing of assumptions for partial observability settings.

1 Introduction
Statistical Forward Planning (SFP) methods (i.e Monte
Carlo Tree Search - MCTS - and Rolling Horizon Evolu-
tionary Algorithms - RHEA), are approaches that use a For-
ward Model to simulate possible future states when given
state-action pairs. These methods have shown a high profi-
ciency in single player games with full observability, as re-
search on General Video Game AI (Perez et al. 2019) has
shown recently. Multi-agent and partially observable games
have gained special research interest, as they pose interest-
ing challenges for all AI methods. Examples of this are the
Marlö (Perez-Liebana et al. 2018) and Pommerman compe-
titions. Pommerman is a game by Resnick et al. (Resnick et
al. 2018a) that enhances the original Bomberman (Hudson
Soft, 1983), which presents a battle scenario which demands
competitive and cooperative skills in a multi-agent, partially
observable environment. For an AI player, Pommerman pro-
vides an excellent benchmark for planning, learning, oppo-
nent modeling, communication and game theory.

This paper presents the first comparison between SFP
methods in Pommerman. The main contribution of the pa-
per is to show how the different methods perform in Pom-
merman and to present an extended analysis on the games
played and how the agents behaved in them. We describe
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Figure 1: Original Pommerman (left) and Java version
(right).

game, related work, agents and experiments, to finally pro-
pose next steps to be taken to improve the analysed methods.

2 Pommerman
Game Rules: The game takes place in a randomly drawn
11 × 11 grid between 4 players. Players are placed in the 4
corners of the grid and the level is scattered with obstacles
of two types: wooden and rigid boxes. The board is sym-
metric along the main diagonal. The game can be played
with full or partial observability. The objective of the game
is to be the last player alive at the end, or the last stand-
ing team. Players can place bombs that explode after 10
game ticks. These bombs, when exploded, generate flames
in a cross-shape with size of (initially) 1 cell around the
explosion point. These flames eliminate players, items and
wooden boxes on collision, as well as explode other bombs.
By default, players can’t drop more than one bomb at a time.
Bombs, as well as obstacles, can’t be traversed. Wooden ob-
stacles, when destroyed, may reveal pick-ups, initially hid-
den to the players. These items are extra bombs (adds 1 to
the bombs ammo), blast strength (adds one to the explosion
size) and kick (allows kicking a bomb in a straight line).

Game Modes: The game can be played in three different
modes: free for all (FFA), team (TEAM) and team radio.
The last mode allows agents in a team to define a com-
munication protocol. In this work we concentrate on non-
communication modes only. To make sure games are finite,
a limit of 800 game ticks is set. In FFA, all players com-
pete against each other, and the last player standing wins.



All players that die immediately lose the game. Players that
are alive at the end tie, even if they are eliminated simulta-
neously at the same (and last) tick. In TEAM mode, players
compete in pairs, with teammates initially placed in oppo-
site corners of the board. A team loses when both agents on
the team die, triggering victory for the other team. It’s not
necessary that both members of the team are alive at the end
of the game for a team to win. If both teams have players
alive at the end of the tick limit, both teams tie.

Board Generation: The play area is generated automat-
ically using a random seed: first, agents are placed in the
corners, allocating some free space around them. Wooden
boxes are then placed to allow a passable passage between
players, followed by uniform random and symmetric posi-
tioning of X = 20 rigid and Y = 20 wooden tiles. If the
number of inaccessible tiles is higher than Z = 4, this pro-
cess repeats. Finally, a number of W = 10 items are placed
on randomly selected wooden boxes, types also chosen at
random. The values of X,Y, Z and W are parameters of the
level generator, with given values used in our experiments.

Framework: The experiments shown in this paper do not
use the original Pommerman implementation1, but an al-
ternative one written in Java2. Figure 1 shows screenshots
of both games. The present framework mimics exactly the
original in terms of rules, observations, modes and level
generation. Furthermore, it is possible to run agents written
for each framework directly in the other one. The Java ver-
sion, however, is optimized to run faster: while the original
Python version runs at 5.3K ticks per second3, this version
runs at 241.4K ticks/s (above 45 times faster). This natu-
rally allows quicker execution for the experiments presented
in this paper. Another reason to implement our own frame-
work is to easily incorporate event logging, used for a deeper
analysis of the results, as shown in the Results section.

At each game tick, the framework provides each agent
with information about the state of the game and the objects
in the board. It also provides a Forward Model (FM), which
can be used to roll the state forward when supplying a set of
actions (one for each player). The agents must return, at each
game tick, one of the available actions: STOP (does noth-
ing), four directions (UP, DOWN, LEFT, RIGHT) and BOMB
(that places a bomb, if possible, in the current position). For
the partial observability settings, the observations received
by the agents are limited to their Vision Range (VR). A VR
of n tiles determines a square of vision centered on the agent,
with n tiles between agent and observation edge. Everything
outside the VR is Fog and ignored by the FM, initializing it
as an empty tile when discovered during the simulations.

3 Related work
3.1 Statistical Forward Planning
Statistical Forward Planning (SFP) is a group of robust,
general, stochastic AI techniques that operate without the

1https://www.pommerman.com/
2https://github.com/GAIGResearch/java-pommerman
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need of training. SFPs rely on an FM of the game that can
be rapidly copied and advanced forward, given actions the
agents would play. Examples of SFPs are Monte Carlo Tree
Search (MCTS), which uses randomized forward simula-
tions to build a search tree, and Rolling Horizon Evolu-
tionary Algorithms (RHEA), which use the same kind of
randomized forward simulations to evolve a plan. Browne’s
MCTS survey (Browne et al. 2012) outlines game and non
game uses of MCTS and its variants, including its ability to
perform better than previously used methods in games like
Go. Since then, MCTS has also been applied to Go with
even greater success in combination with deep learning(Sil-
ver et al. 2016). SFPs have shown a high degree of adapt-
ability to previously unseen problems, and have been popu-
lar with entries to General Video Game AI (GVGAI; (Perez
et al. 2019)) competitions in both single and two-player
games. RHEA was first used in real-time games to play the
Physical Travelling Salesman Problem (Perez-Liebana et al.
2013), and its tuning and performance was deeply analysed
in multiple GVGAI games. RHEA is highly parameteris-
able and it has been shown to outperform MCTS in many
games (Gaina et al. 2017), (Gaina, Lucas, and Perez-Liebana
2017a), (Gaina, Lucas, and Perez-Liebana 2017b), (Gaina,
Lucas, and Perez-Liebana 2019).

3.2 Pommerman
The first Pommerman competition was organized in 2018
and focused on the FFA game mode This competition saw
a Finite State Machine Tree Search approach come in first,
with a rule-based AI in second (Resnick et al. 2018a). The
second competition organized received more entries, in-
cluding both planning and learning approaches. Organized
as part of NeurIPS 2018, this competition focused on the
TEAM mode (Resnick et al. 2018a). In (Osogami and Taka-
hashi 2019), the authors describe their 2 MCTS-based agents
which ranked first and third, and compare them against
the 2nd place agent (another MCTS implementation with a
depth D = 2). Osogami fixes random seeds on the first level
of the tree and perform deterministic rollouts with D = 10.

Zhou et al. (Zhou et al. 2018) compared different search
techniques, such as MCTS, BFS and Flat Monte Carlo
search in this game. The authors show, in the full observable
mode, that MCTS is able to beat simpler and hand-crafted
solutions. The results reported in our paper align with these
findings, but we expand the work to partially observable set-
tings, add RHEA to the pool of agents tested, and report a
more detailed analysis on how the agents played the games.

An important body of literature on Pommerman is on the
challenge of learning to play offline. Peng et al. (Peng et
al. 2018) used continual learning to train a population of
advantage-actor-critic (A2C) agents in Pommerman, beat-
ing all other learning agents in the 2018 Competition. A
Deep Neural Network (DNN) is updated using A2C in a pro-
cess that allows the agent to progressively learn new skills,
such as picking items and hiding from bomb explosions.
Another Deep Learning approach is proposed by (Maly-
sheva et al. 2018), which uses Relevance Graphs obtained
by a self-attention mechanism. This agent, enhanced with a
message generation system, analyzes the relevance of other



agents and items observed in the environment. The authors
show that their Multi-Agent network outperforms all other
tested agents. Resnick et al. (Resnick et al. 2018b) proposed
Backplay, which speeds up training by starting on the termi-
nal states of an episode. By backtracking towards the initial
state, the agent improves on sample-efficiency and can learn
faster using curriculum learning. (Gao et al. 2019) imple-
mented Skynet, second-best learning agent in the NeurIPS
2018 Team Competition. Each agent of this team is a neural
network trained with Proximal Policy Optimization, reward
shaping, curriculum learning and action pruning.

Finally, some relevant work on hybrid methods combines
Deep Learning with MCTS. In (Kartal, Hernandez-Leal, and
Taylor 2018), also later expanded in (Kartal et al. 2019), the
authors train a DNN using Asynchronous Advantage Actor-
Critic (A3C) enhanced with temporal distance to goal states.
They also integrate MCTS as a demonstrator for A3C, which
helps reduce agent suicides during training via Imitation
Learning. It is interesting to observe here that these findings
align with the lower suicide rate shown by MCTS in the ex-
periments performed for this paper (see Results section).

4 Agents
This section describes the 4 agents used in the experiments
and the heuristic employed to evaluate states, in this order.

One Step Look Ahead (OSLA): This is a simple agent
that uses the FM to roll the current state with each of the 6
actions available. Each future state is evaluated with a cus-
tom heuristic (see the end of this section), which provides a
numerical score for it. The action that led to the highest score
is applied in the game, ties broken uniformly at random.

RuleBased: This agent is a rule based system that mimics
the Simple Agent of the original Pommerman implementa-
tion4. At each state, the agent uses Dijkstra’s algorithm, with
a maximum depth of 10, to compute distances to the differ-
ent game objects in the current game state. Then, it executes
the following logic: First, if there are upcoming bomb explo-
sions, it tries to escape. Otherwise, if the agent is adjacent to
an enemy, it should lay a bomb. If there is an enemy within 3
steps or a power-up within 2, the agent moves towards it. Al-
ternatively, if the agent is adjacent to a wooden box, it will
lay a bomb to try to destroy it and open more open space.
Finally, if none of the rules before have triggered, the agent
moves randomly to a not recently visited position.

Rolling Horizon Evolutionary Algorithms (RHEA):
RHEA is a family of algorithms that use evolution in real-
time to recommend an action on each turn for the player
to make. In its standard form (Perez-Liebana et al. 2013),
used in this paper, RHEA evolves sequences of L actions.
Each sequence fitness is calculated by first using the FM
to roll the state L steps ahead, and then evaluate the state
reached at the end of the sequence of actions. In our exper-
iments, this evaluation is done with the custom state heuris-
tic described at the end of this section. RHEA uses a pop-
ulation of N individuals and regular evolutionary operators

4https://github.com/MultiAgentLearning/playground/blob/
master/pommerman/agents/simple\ agent.py

(i.e. mutation, crossover and elitism) apply. At the end of the
thinking budget, RHEA returns the first action of the best
sequence found (the one with the best fitness) to be played
in the game. One of the main improvements in RHEA, also
used in these experiments, is the shift buffer (Gaina, Lucas,
and Perez-Liebana 2017b). Once the best individual is se-
lected at one game tick, the first action is executed in the
game and removed from the individual. Then, the rest of the
action sequence is shifted, so the next individual starts with
the second action of the best sequence in the previous step.
A new action is created, uniformly at random, for the end of
the sequence, keeping the individual length at L. This mech-
anism retains good solutions from previous game ticks. Each
solution shifted is reevaluated in the following game ticks to
account for inaccuracies in the opponent model or FM.

Monte Carlo Tree Search (MCTS): MCTS (Coulom
2006) is a highly selective best-first tree search method. This
iterative algorithm balances between exploitation and explo-
ration of the best moves found so far and those requiring
further investigation, respectively. On each iteration of the
algorithm, the standard MCTS performs 4 steps: 1) selec-
tion uses a tree policy to navigate the tree until finding
a node that does not have all its children expanded; 2) ex-
pansion adds a new node to the tree; 3) simulation performs
moves according to a default policy until a terminal
node or a depth D is reached. The game state reached at the
end of this rollout is evaluated using a heuristic (see next
section); and 4) backpropagation updates the visit counts of
all traversed nodes in this iteration, as well as the final re-
wards obtained. At the end of the allowed budget, MCTS
returns the action taken most times from the root. Count vis-
its and average rewards are used to inform the tree policy,
which normally takes the form of Upper Confidence Bounds
for trees (Kocsis and Szepesvári 2006). This policy has a pa-
rameter K that balances exploration and exploitation during
the selection step. The default policy used in this paper picks
actions uniformly at random for the simulation step.

Custom State Heuristic: OSLA, MCTS and RHEA use
the same heuristic to evaluate a state. It is calculated as the
difference between the root and the evaluated game states,
based on a series of features: number of alive teammates
(∆t), number of alive enemies (∆e), number of existing
wooden blocks (∆w), blast strength (∆b) and the ability
of kicking bombs (∆k ∈ {0, 1}). The state value is the
weighted sum

∑
i ∆i × wi, where wt = 0.1 (0 for FFA),

we = 0.13 (0.17 for FFA), ww = 0.1, wb = 0.15 and
wk = 0.15. The weights were manually picked by observing
agent performance prior to the experiments.

5 Experimental Setup
We define a level as a game with a fixed board. We gener-
ated 20 fixed levels with 20 different random seeds, sampled
uniformly at random within the range [0, 100000]. All exper-
iments described in the rest of this paper play each of these
20 levels 10 times, hence 200 plays per configuration. We
test 2 different game modes, Free For All (FFA) and TEAM,
in 4 different observability settings: vision ranges VR ∈ {1,
2, 4}, or fully observable (denoted in this paper as∞).



Table 1: Experimental Setup. All≡VR ∈ {1, 2, 4,∞}. Each
set up is repeated 200 times (10×20 fixed levels). There are
32 different configurations, totalling 6400 games played.

Game mode: FFA
VR Agents

∞
RHEA vs OSLA vs OSLA vs OSLA

RHEA vs RuleBased vs RuleBased vs RuleBased
MCTS vs OSLA vs OSLA vs OSLA

MCTS vs RuleBased vs RuleBased vs RuleBased

All OSLA vs RuleBased vs RHEA vs MCTS
RHEA vs MCTS vs RHEA vs MCTS

Game mode: TEAM
VR Agents

All

RHEA × 2 vs OSLA × 2
RHEA × 2 vs RuleBased × 2

MCTS × 2 vs OSLA × 2
MCTS × 2 vs RuleBased × 2

RHEA × 2 vs MCTS × 2

OSLA, RuleBased, RHEA and MCTS were used in the
tests. No communication is allowed between agents. For
RHEA and MCTS, their look-aheads (L and D) are set to 12
moves. RHEA and MCTS use a budget of 200 iterations per
game tick to compute actions, with a uniform random oppo-
nent model and the same custom state heuristic (described
in the previous section) for evaluating states found at the
end of action sequences. MCTS uses K =

√
2 and RHEA

evolves a single individual (N = 1). New individuals are
created every iteration via mutation (rate 0.5), keeping the
best individual and a shift buffer is used.

Given that Pommerman is a 4-player game, the number
of combinations of agents and modes is prohibitively high,
thus we made a selection of the most interesting settings for
our tests. Table 1 shows all configurations tested. For each
game mode, first we aim to confirm our initial hypothesis
that RHEA and MCTS have a higher performance than the
other two simpler methods. Afterwards, we try to determine
which of these two algorithms achieves better results in di-
rect confrontation. In order to account for possible biases
due to symmetry along the main diagonal, we tested RHEA
versus MCTS (VR = {1, 2, 4,∞}) with swapped positions.
These tests showed that there is no relevant difference on the
performance of the teams after the position exchange, thus
swapped experiments were excluded. All experiments were
run on IBM System X iDataPlex dx360 M3 server nodes,
each with an Intel Xeon E5645 processor and a maximum
of 2GB of RAM of JVM Heap Memory.

6 Results
Overall, the results indicate that RHEA and MCTS are both
stronger than the simpler methods tested, OSLA and Rule-
Based. This section presents and discusses results in the two
game modes tested, FFA and TEAM5.

5Data and plots are available here: https://github.com/
GAIGResearch/java-pommerman/tree/master/data/

6.1 FFA
In FFA games with full observability (first section of Ta-
ble 2), it is interesting to observe that, while the difference
in win rate against the RuleBased AI is quite small (rows 1
and 3) at 46.5% for MCTS and 33.0% for RHEA, MCTS
tends to end more of its non-winning games in ties rather
than losses, as opposed to RHEA. This suggests RHEA to
adopt more aggressive or risky strategies, whereas MCTS
plays safer and often avoids dying until the end of the game.
This is corroborated by the average number of bombs these
agents lay (RHEA uses about 30 more per game, see Fig. 2).

It is also worth taking into account the fact that the num-
ber of deaths by suicide in RHEA is higher than MCTS,
as shown in Figure 2 (left). We refer to suicides to those
cases in which an agent is killed by its own bomb. Note
that in some cases this also includes chain reactions from
other bombs. Suicides in Pommerman are seen as one of
its most challenging aspects (Kartal et al. 2019). In general,
MCTS achieves the lowest suicide rate in all VR settings and
modes, which helps explain the success of this method.

The win rate percentage for both RHEA and MCTS in-
crease when facing OSLA, with very few ties in both cases.
The low number of ties compared to deaths in non-winning
games suggests more aggressiveness, although OSLA is hin-
dered by its short look-ahead in trying to avoid bomb explo-
sions and suicides, as its horizon does not reach beyond the
10 game ticks bombs take to explode. MCTS clearly dom-
inates OSLA with a 91.5% win rate. When all 4 methods
play against each other (second section of Table 2), win rate
heavily shifts in favour of MCTS with very short VR (1).
In all VR options, OSLA and RuleBased keep a win rate
no higher than 5%. RHEA’s performance is similar for all
VR values, 10% and 21% of winning. It’s interesting to ob-
serve that the number of losses is higher with low visibility
(74.50%, V R = 1) than in the other cases, where ties hap-
pen more often.

Finally, MCTS achieves a higher win rate when playing
only RHEA in the shorter VR option (1; see third section
of Table 2), but very similar to RHEA in the other vision
ranges. RHEA, with VR= 1, loses 85.5% of games and ties
rarely, a trend that changes for the other values of VR where
ties become more frequent than losses.

6.2 TEAM
In team games, we can observe a similar performance of
the algorithms with interesting differences. When playing
against OSLA (top of Table 3), both RHEA and MCTS
achieve high victory rates and low ties, as seen in FFA, with
MCTS close to 100% win rate in all VR options. RHEA ap-
pears to perform better with high VR (and still wins fewer
games than MCTS).

The average MCTS win rate when playing against the
RuleBased AI is higher than previously observed in FFA
games, around 70% vs 46.5%. This is probably due to hav-
ing two strong agents on the same team. The performance
of MCTS is kept fairly consistent regardless of VR (second
section in Table 3). When MCTS plays RHEA, the former
algorithm dominates when VR= 1, but they achieve a simi-



Figure 2: Events recorded during the FFA games played for this paper (results for TEAM are very similar). Left: percentage of
deaths caused by the own agent bombs. Center: number of bombs placed per game. Right how many pick-ups are collected by
the different agents. All charts show values for VR = {1, 2, 4,∞}. Shaded area shows the standard error of the measure.

Table 2: FFA win rate (W), ties (T) and losses (L). 1st col-
umn indicates vision range ∈ {1, 2, 4,∞}. Names in italics
represent results averaged across players of the same type.

VR Agents % Wins % Ties % Losses

∞ MCTS 46.50 (4.0) 42.00 (3.0) 11.50 (2.0)
RuleBased 3.00 (1.0) 16.50 (3.0) 80.50 (3.0)

∞ MCTS 91.50 (2.0) 5.00 (2.0) 3.50 (1.0)
OSLA 1.00 (0.3) 2.00 (1.0) 97.00 (1.0)

∞ RHEA 33.00 (3.0) 22.00 (3.0) 45.00 (4.0)
RuleBased 12.50 (2.3) 12.67 (2.3) 74.83 (3.0)

∞ RHEA 65.50 (3.0) 1.00 (1.0) 33.50 (3.0)
OSLA 11.17 (2.3) 0.33 (0.0) 88.50 (2.3)

1

RHEA 20.50 (3.0) 5.00 (2.0) 74.50 (3.0)
OSLA 2.50 (1.0) 0.50 (0.0) 97.00 (1.0)
MCTS 67.50 (3.0) 7.50 (2.0) 25.00 (3.0)

RuleBased 1.50 (1.0) 3.00 (1.0) 95.50 (1.0)

2

RHEA 21.00 (3.0) 43.00 (4.0) 36.00 (3.0)
OSLA 0.00 (0.0) 3.50 (1.0) 96.50 (1.0)
MCTS 18.00 (3.0) 54.00 (4.0) 28.00 (3.0)

RuleBased 4.50 (1.0) 23.00 (3.0) 72.50 (3.0)

4

RHEA 19.00 (3.0) 57.00 (4.0) 24.00 (3.0)
OSLA 0.00 (0.0) 2.00 (1.0) 98.00 (1.0)
MCTS 16.50 (3.0) 59.00 (3.0) 24.50 (3.0)

RuleBased 3.00 (1.0) 17.00 (3.0) 80.00 (3.0)

∞
RHEA 13.00 (2.0) 51.50 (4.0) 35.50 (3.0)
OSLA 0.00 (0.0) 3.50 (1.0) 96.50 (1.0)
MCTS 21.00 (3.0) 61.50 (3.0) 17.50 (3.0)

RuleBased 1.50 (1.0) 32.00 (3.0) 66.50 (3.0)

1 RHEA 8.50 (2.0) 6.00 (2.0) 85.50 (2.5)
MCTS 19.50 (3.0) 40.50 (3.0) 40.00 (3.5)

2 RHEA 8.00 (2.0) 38.50 (3.5) 53.50 (3.5)
MCTS 5.50 (1.5) 56.50 (3.5) 38.00 (3.0)

4 RHEA 1.25 (1.0) 67.00 (3.0) 31.75 (3.0)
MCTS 2.00 (0.5) 74.25 (3.0) 23.75 (3.0)

∞ RHEA 1.75 (0.5) 73.25 (3.0) 25.00 (3.0)
MCTS 1.00 (0.5) 83.75 (2.5) 15.25 (2.5)

Table 3: TEAM win rate (W), ties (T) and losses (L). 1st col-
umn indicates vision range (VR). Results include 2 agents of
the same type on a team and average across them. The row
agent team plays against the column opponent team.

VR Agents % Wins % Ties % Losses
Opponent: OSLA

1 RHEA 76.50 (3.0) 1.50 (1.0) 22.00 (3.0)
MCTS 97.00 (1.0) 1.00 (1.0) 2.00 (1.0)

2 RHEA 88.50 (2.0) 3.50 (1.0) 8.00 (2.0)
MCTS 95.00 (2.0) 2.00 (1.0) 3.00 (1.0)

4 RHEA 90.50 (2.0) 2.50 (1.0) 7.00 (2.0)
MCTS 97.00 (1.0) 2.50 (1.0) 0.50 (0.0)

∞ RHEA 81.00 (3.0) 0.50 (0.0) 18.50 (3.0)
MCTS 98.50 (1.0) 1.50 (1.0) 0.00 (0.0)

Opponent: RuleBased

1 RHEA 76.50 (3.0) 3.00 (1.0) 20.50 (3.0)
MCTS 68.50 (3.0) 19.50 (3.0) 12.00 (2.0)

2 RHEA 45.00 (4.0) 27.00 (3.0) 28.00 (3.0)
MCTS 74.00 (3.0) 22.50 (3.0) 3.50 (1.0)

4 RHEA 55.00 (4.0) 22.50 (3.0) 22.50 (3.0)
MCTS 70.00 (3.0) 28.00 (3.0) 2.00 (1.0)

∞ RHEA 40.50 (3.0) 23.50 (3.0) 36.00 (3.0)
MCTS 73.00 (3.0) 23.00 (3.0) 4.00 (1.0)

Opponent: RHEA
1 MCTS 68.50 (3.0) 14.00 (2.0) 17.50 (3.0)
2 MCTS 22.50 (3.0) 59.00 (3.0) 18.50 (3.0)
4 MCTS 7.50 (2.0) 85.50 (2.0) 7.00 (2.0)
∞ MCTS 9.00 (2.0) 84.00 (3.0) 7.00 (2.0)

lar performance with higher visibility, increasing the number
of matches finished in ties.

This doesn’t mean, however, that playing style does not
vary when VR is changed. Figure 3 shows heatmaps of bomb
locations by MCTS for all VR options. As can be observed,
low observability leads to significantly less and very spe-
cific bomb placements. When VR = 1 there are less bombs
placed than with higher VR values, but they are more lo-



Figure 3: Bomb placement by MCTS in TEAM mode. Top
left: V R = ∞; top right: V R = 4; bottom left: V R = 2;
bottom right: V R = 1. Agent starts on top left corner.

calized around the starting position. In higher visibility, the
bombs are more spread out around the level. However, mak-
ing the game fully observable encourages the agent to ex-
plore more and scatter bombs across the entire map. It seems
clear that the presence of PO hinders the capability of the
agents to use many bombs.

RHEA’s performance is again low with reduced vision
range, but similar to MCTS with vision range 4 (the de-
fault option in the Pommerman competition). In terms of
bomb placement, however, one can see a clear difference
with MCTS. Figure 4 shows a difference between RHEA
and MCTS, especially in intermediate VR values, showing
a higher number of bombs being drop by the former (which
agrees with the observations seen in Figure 2. In the case of
RHEA, bombs are more concentrated around the starting po-
sition and around the edges of the board than MCTS, where
we see a more even spread in the starting corner and towards
the center of the map. This clearly shows that both SFP algo-
rithms behave (i.e. explore the search space) differently. The
large amount of bombs placed by RHEA may also explain
why it tends to suicide more often.

7 Conclusions and Future Work
This paper presents a comparative study on the performance
of SFP (MCTS and RHEA) agents on the game of Pom-
merman. The first conclusions that can be drawn is that
SFP methods are stronger than the rule-based and one step
look ahead agents they’re compared against. Additionally,
the configuration tested for MCTS seem the provide a better
performance than that of RHEA. The analysis carried out on
the different algorithms shows that more offensive strategies
(like RHEA having a higher rate of bomb placing) are nor-
mally also riskier, due to the known challenge of suicides in
this game. In fact, MCTS tends to lay less bombs than the
other agents, but achieves a higher winning percentage in
most modes and visibility settings. Partial observability in-
creases the number of suicides for all agents, and full observ-
ability brings the performance of MCTS and RHEA quite

Figure 4: Bomb placement by RHEA in TEAM mode. Top
left: V R = ∞; top right: V R = 4; bottom left: V R = 2;
bottom right: V R = 1. Agent starts on top left corner.

closer. The PO setting also influences where and how often
bombs are placed (as seen in the heatmaps presented), and
shows differences of behaviour between the different SFP
methods. Adding heuristics to remember where and when
bombs were placed may lead to a performance boost. An-
other interesting observation is that many games end up in
ties, especially when the visibility range of the agents is
greatly limited. One possibility to alleviate this is to adopt
the collapsing boards methodology followed in the Pommer-
man, by which winners are enforced.

RHEA is an algorithm with a large parameterization
space. Further tests done in Pommerman with other parame-
ters (N , L, mutation rate, among others) have shown differ-
ent results for different game settings. A possibility of future
work is to automatically tune RHEA parameters to boost
the strength of this method, which in many other games has
shown competitive performance with MCTS. A similar ap-
proach can be taken for MCTS (Sironi et al. 2018), although
this algorithm has a smaller parameter space (comparing
vanilla versions). Our initial tests on this matter suggest that
this is indeed possible.

Other lines of future work, which tackle directly per-
formance in Pommerman, are of a wider interest for the
Game AI community. One of them is to learn an effec-
tive opponent model of the other agents, which improves
upon the random modelling assumed in this paper. Sim-
ple statistical modelling based on the frequency of actions
have provided promising results in the past for 2-player GV-
GAI (Gonzalez-Castro and Perez-Liebana 2017). Other in-
teresting avenues for future work are to tackle partial ob-
servability by introducing assumptions of the unknown tiles
of the FM (Osogami and Takahashi 2019), or learning value
functions that identify trap states or moves (that can cause
suicides in the game). Last but not least, it would also be
interesting to compare these planning SFP approaches to
learning agents submitted to the Pommerman competition,
or even investigate more hybrid methods for this game.
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