
Introducing Real World Physics and
Macro-Actions to General Video Game AI

Diego Perez-Liebana
University of Essex

Colchester, UK
dperez@essex.ac.uk

Matthew Stephenson
Australian National

University
Canberra, Australia

matthew.stephenson@anu.edu.au

Raluca D. Gaina
University of Essex

Colchester, UK
rdgain@essex.ac.uk

Jochen Renz
Australian National

University
Canberra, Australia

jochen.renz@anu.edu.au

Simon M. Lucas
University of Essex

Colchester, UK
sml@essex.ac.uk

Abstract—The General Video Game AI Framework has fea-
tured multiple games and several tracks since the first competi-
tion in 2014. Although the games of the framework are very
assorted in nature, there is an underlying commonality with
respect to the physics that govern the game: all of them are
based on a grid where the sprites make discrete movements,
which is not expressive enough to cover any meaningful physics.
This paper introduces an enhanced physics system that brings
real-world physics such as friction, inertia and other forces to the
framework. We also introduce macro-actions for the first time in
GVGAI in two different controllers, Rolling Horizon Evolution
and Monte Carlo Tree Search. Their usefulness is demonstrated
in a new set of games that exploits these new physics features. Our
results show that macro-actions can help controllers in certain
situations and games, although there is a strong dependency on
the game played when selecting which configuration fits best.

I. INTRODUCTION

When referring to games, these can come in many forms.
We could be looking at puzzles, single or N -player games, 2D,
3D, card, board games and many other categories. Since 2014,
the General Video Game AI (GVGAI [1]) Framework and
Competition have benchmarked a total of 100 single-player
and 40 two-player games [2]. These games do vary in many
forms and characteristics (from puzzles to shooters, featuring
labyrinths, dungeon crawlers, role-playing and arcade games).

However, all these games have at least one thing in common:
the physics behind the games share certain characteristics that
make them similar. All GVGAI games up to date were based
on a grid structure that discretizes the game state, coarsening
positions and velocities to certain values. For instance, the
orientation of the sprites in this case could be either Nil, Up,
Down, Left or Right, without providing a finer precision.
Although this is good enough for certain games (i.e. PacMan),
it lacks the required precision to build games such as Scorched
Earth (Wendell Hicken, 1991), where the player shoots mis-
siles with a specific inclination measurable in degrees.

The first aim of this paper is to describe the modifications
carried out in the GVGAI framework to allow this change
(among many others; see Section III-A), in order to showcase
the enhanced possibilities of game design within the frame-
work and its associated Video Game Description Language

(VGDL). This paper also presents and describes the first set
of 10 games designed around these features1.

Being able to have such precision is an interesting feature
from the game design point of view, but it additionally allows
for more research in learning and playing with agents. Not
only the state space of the games grows considerably, which
can make search algorithms struggle, but it also modifies the
way agents navigate through the level. For instance, in a grid
physics game (like Aliens), the amount of pixels traveled by the
agent for every lateral move is a constant, determined by the
speed of the sprite. In continuous physics games (like Mario),
however, due to the inclusion of inertia, the distance traveled
per action applied depends heavily on the current speed.

Therefore, this opens an interesting research question for
analysing how these agents perform in these new games in a
general setting. The second aim of this paper is to provide
an initial study about how the two most powerful sample
controllers within the GVGAI framework (Monte Carlo Tree
Search and Rolling Horizon Evolutionary Algorithm) play the
games in this new set. In particular, this paper analyzes the
effects and performance of using macro-actions and different
lookaheads in real-world physics games.

In the rest of this paper, Section II describes related works
on the subject, and Section III revises the original GVGAI
framework and the modifications performed to include the new
physics, including also the description of the new game set.
Section IV describes the agents tested and the macro-actions
system. Section V details the experimental work and discusses
the results, to finally conclude the paper in Section VI.

II. LITERATURE REVIEW

Games used in competitions in the Computational Intelli-
gence in Games (CIG) community come in different shapes
and forms, but many bring the complexity of a continuous
set of states and/or actions, as well as real-world physics at
different degrees. The presence of these features clearly affects
the approaches that are taken to tackle and play these games.
The main contribution of this paper is to bring this type of
games under the general framework, rather than addressing
them separately.

1For simplicity, we refer to this as Continuous or Real-World Physics games
and sets, in contrast with the original Grid Physics ones.



A popular competition in the field is the Mario (or Plat-
former, in its latest versions) AI competition [3]. In this game,
the player controls Mario, whose objective is to clear the
level, reaching the far end, while collecting bonus items and
avoiding hazards. Although the set of actions is discrete -
they are mapped from the buttons of a controller pad -, the
game features a continuous state space and real-world physics
such as gravity and inertia: if Mario is running, it won’t
stop automatically when directions are no longer supplied,
but a few frames later. M. Nicolau et al. [4] took these
considerations into account when creating their entry for the
Mario AI competition, in a work that evolved Behaviour Trees
with Grammatical evolution to improve navigation in the level.

Another popular competition that spanned through a few
years was the Physical Travelling Salesman Problem (PTSP)
challenge [5]. As in Mario AI, the physics of the game
engine did take into account aspects such as inertia and
elastic bouncing (up to different degrees in the Multi-Objective
version of the competition [6]). In this game, where a ship
needs to collect all the waypoints scattered in a maze as
quickly as possible, the physics dynamics were crucial to
determine an optimal path through the level, as shown in [7]. In
this work, the authors show how taking into account the inertia
of the ship permits to find better routes than only considering
the distances between the waypoints.

With regards to physics, the Geometry Friends AI [8] occu-
pies a similar position in the space of CIG game competitions:
inertia and gravity are taken into account in a game where
two different players must collaborate in order to achieve a
common task. This competition, however, as well as the ones
mentioned previously in this section, have a discrete set of
actions. Effectively this means that all actions can be either
on or off, not being able to specify an intensity for how much
the agent moves in a specific direction with a single action.

A clear counterexample for this kind of scenarios is Angry
Birds [9], where the player must provide an angle and a
strength for shooting birds into intricate structures that must
be destroyed. A more complex example is the car racing game
TORCS (The Open Racing Car Simulator), and its associated
competition [10]. In this game, steering left or right and
throttling are continuous actions, as they can be specified in
a range of floating point values (from −1 to 1 and from 0 to
1, respectively). Coupled with a continuous state space (such
as position, velocity and orientation) and real-world physics,
treating the action and state space with care was necessary
in order to develop an efficient controller. Popular approaches
used for controllers in this contest were the evolution of fuzzy
logic drivers [11] and complex heuristics [12].

The idea of using macro-actions (from a simple action
repetition to the design of more complex variants) has been
used multiple times when the size of the state space makes
search a very costly task. Pioneered in the early days of
Reinforcement Learning [13], macro-actions have been used in
Real-Time Strategy games like Wargus [14] (applying them to
simultaneous moves of variable duration), the artificial game
P-Game [15] and the card game Dou Di Zhu [16], where the

authors split actions in several consecutive decisions in order
to reduce the branching factor at the expense of tree depth.

Last but not least, macro-actions have also been used in the
PTSP game mentioned above [7], [17], both for tree search
and evolutionary techniques, as explored in this paper. In their
work, the authors propose a simple repetition of actions as a
way to coarse the search and provide a longer thinking time
for the agent in this real-time game. Results showed that there
was an optimal amount of times an action should be repeated
to maximize performance: shorter macro-actions would not
allow for an effective exploration of the search space, while
longer ones did not provide the agent with enough precision
to navigate through the maze efficiently. A similar approach
has been followed in this work when applying this concept to
the new GVGAI games, aiming to investigate if the findings
there extrapolate to multiple games at once.

III. THE GENERAL VIDEO GAME AI FRAMEWORK

The General Video Game AI Framework [1] is a Java
implementation of the original py-vgdl benchmark developed
by Tom Schaul [18]. The framework reads games described in
VGDL and presents an object oriented interface to an agent
that is able to play it, without providing the rules, objectives
or the meaning of the different sprites present in the game.

The agent receives information about the game state by
means of a Java object, which allows the agent to query
the game state (score, timesteps and victory conditions), the
avatar state (player’s position, velocity, orientation), and the
positions of different sprites in the level. These are provided as
observations, identified with an integer id for its (anonymized)
type. In the competition version of the framework, agents must
comply with a thinking budget of 40ms per action, plus an
initialization phase of 1s at the beginning of the game. During
this time, the agents can use a forward model to simulate the
effects of applying an action in a copy of the current game
state. In order to present a fair setup, agnostic of the machines
used to run extensive tests, it is possible to limit the thinking
budget as a maximum number of uses of the forward model.

The version of VGDL that was run during the 2016 com-
petitions allows for the definition of 2-dimensional single and
2-player games, with sprites defined by a type, a 2D position
and a square size. Interactions can occur between sprites when
they collide, and their consequences are determined within the
game rules and the application of effects. There exists a map-
ping between the concepts that need to be specified in VGDL
and the sprites, effects and terminations that are implemented
in the framework. New additions to the ontology need to be
addressed in both sides of this mapping, and the ones added
for this work are described in the following subsections. For
more information about the previous implementation of the
framework, the reader is referred to [1].

A. Towards Real-World Physics Games

This section describes the updates on the GVGAI’s ontol-
ogy, avatars, effects and terminations required to facilitate the
creation of games with real-world physical properties.



1) Physics Ontology: The most important modification to
the GVGAI Framework is the addition of a new continuous
physics ontology, which can be used to allow sprites to move
in a more fine-tuned way throughout any given level. Sprites
can either be assigned to use these new continuous physics,
or the old grid-based physics. Sprites that use the continuous
physics require three new parameters to be defined for them:
mass, friction and gravity. Whilst it is typical for gravity have
the same value for all sprites within a game, it can also be set
separately for each sprite type.

Much like the original grid physics, sprites with continuous
physics undertake movement through the use of an active
movement function, which takes into account the direction
and speed of the sprite. Unlike sprites with grid physics, these
directions are not limited to one of four options, and the speed
is not defined at the grid level, but rather at the screen pixel
level. This allows the sprite to move in any possible direction
and with any possible speed.

Given the input of a speed and direction, the movement
of the sprite is updated as follows. A vector for this input is
calculated, using the latter value to determine its direction and
the former value, multiplied by the sprite’s mass, to determine
its magnitude. This vector is then added to the the sprite’s
current velocity, in order to update the sprite’s direction and
speed. The sprite’s current velocity is used to change the
position of the sprite at every tick. Using this method means
that sprites will suffer from inertia when moving, as new
movement commands do not necessarily override previous
ones, but are instead added together.

In addition, the sprite is subject to passive movement,
which occurs automatically every game tick. This function
may be used to both slow down the sprite, due to friction,
and to add a downwards force on the sprite, due to gravity. If
the sprite is affected by friction, then, every tick, the sprite’s
current speed is multiplied by 1 − f(s) (where f(s) is the
sprite’s friction). If the sprite responds to gravity, a gravity
vector −→g is added to the sprite’s current movement vector at
every tick. −→g points straight down and its magnitude is equal
to the sprite’s mass multiplied by the sprite’s gravity.

2) New Sprites: This section describes the new avatar and
other sprites created for the continuous physics games. The
MovingAvatar, FlakAvatar, OrientedAvatar, ShootAvatar and
Missile types mentioned, which some of the sprites described
are based on, are part of the old GVGAI Framework [1].

• LanderAvatar: A special type of OrientedAvatar (avatar
with a defined orientation) that can accelerate (action Up),
decelerate (Down) and rotate (Left or Right). When
the LanderAvatar accelerates, a set value is added to its
speed, while its direction remains unchanged. Decelerat-
ing has a similar effect, but in the direction opposite to
the sprite’s current orientation. When the LanderAvatar
rotates, it only changes its direction.

• SpaceshipAvatar: A special type of ShootAvatar similar
to the LanderAvatar, but which can also spawn new
sprites (Use). Sprites spawned have the same direction
as the avatar.

• CarAvatar: A special type of OrientedAvatar that can
move forwards (Up), backwards (Down) and turn (Left
and Right). The CarAvatar must be moving either
forwards or backwards at all times. The CarAvatar has
a continuous movement of a set speed, with the direction
being determined by its current orientation and whether
it is moving forwards or backwards. When the CarAvatar
rotates, it only changes its direction.

• AimedAvatar: A special type of ShootAvatar that can only
rotate (Left and Right) and spawn a new sprite (Use).
When the AimedAvatar rotates, its direction changes.
Sprites spawned have the same direction as the avatar.

• BirdAvatar: A special type of OrientedAvatar that only
has one action, jump (Use). When the BirdAvatar jumps,
a vertical upwards movement of a set speed is applied.

• PlatformerAvatar: A special type of MovingAvatar that
can move sideways (Left and Right) and jump (Use).
The PlatformerAvatar is defined as “on the ground” if
there is at least one sprite of a pre-defined set directly
below it. When the PlatformerAvatar moves either left or
right, a vector with a set speed and the desired direction
is added to its current movement vector. This speed
is greater when the PlatformerAvatar is on the ground.
When the PlatformerAvatar jumps, a vertical upwards
movement of a set speed is applied, if and only if the
PlatformerAvatar is “on the ground”.

• WizardAvatar: A special type of MovingAvatar similar
to the PlatformerAvatar, but which can also spawn new
sprites (Down). Sprites spawned have the same vertical
position as the avatar and are placed either to the left or
right of the avatar, based on whether it last moved left or
right.

• Walker: A special type of Missile that moves either left
or right. When the Walker is prevented from moving in
its current direction, it reverses its direction.

• WalkerJumper: A special type of Walker for which, each
tick, there is a random chance that a movement vector
with a set speed in the upwards direction will be applied.

3) New Interactions: This section describes the new Inter-
actions that were created for the continuous physics games.

• WallStop: Sets either the horizontal or vertical component
of the first sprite’s movement vector to zero, depending
on the relative position of the second sprite.

• WallBounce: Multiplies the horizontal or vertical com-
ponent of the first sprite’s movement vector by −1,
depending on the relative position of the second sprite.

• BounceDirection: Sets the direction of the movement
vector of the first sprite to the direction of the vector
formed by the centre points of the two sprites.

• KillIfNotUpright: Kills the first sprite if the difference
between its current rotation and 3

2π (upwards direction)
is greater than a set value.

4) New Games: Table I shows the new set of games that
make use of the features described above and constitute the
set employed for the experiments presented in this paper.



Figure 1: Rolling Horizon Evolutionary Algorithm steps.

These games present challenges at multiple levels, such as
platformers (Mario, Candy), shooters (Asteroids), games that
require long term planning (PTSP) and classic arcade games
which require fast reaction times (Lander or Pong).

IV. AGENTS

This section describes the agents employed in this study,
together with the macro-action handler and the value function
used for both approaches.

A. Rolling Horizon Evolutionary Algorithm

Rolling Horizon Evolutionary Algorithms (RHEA) [19] are
a type of EAs where individuals represent sequences of L
actions (or action plans). The forward model (FM) provided
by the GVGAI framework is used to evaluate the individuals
by executing all the actions in the sequence. The final fitness
is provided by the value function (see Section IV-C2) that
evaluates the state reached at the end of the plan.

Figure 1 shows the basics steps of the RHEA agent. The
initial population is formed of one or more individuals that
are initialized at random (although seeding strategies have
been explored in the domain of GVGAI [20]). Traditional
genetic operators, such as selection, crossover and mutation
are applied to generate new individuals, which, after being
evaluated, may be kept in the population if their fitness is
among the best N (with N being the population size).

After the budget has been consumed, the best individual
of the population is identified and its first action returned as
the move to make in the game. For more details about this
algorithm and improvements on the vanilla version of this
agent in GVGAI (which is the one used in this work), the
reader is referred to [19], [20].

B. Monte Carlo Tree Search

Hundreds of research articles have been written about Monte
Carlo Tree Search (MCTS) and its application to games. Not
surprisingly so, as it has traditionally been one of the most
efficient techniques to build players for the game of Go [21],
and it has shown a high proficiency in General Game [22] and
General Video Game Playing [23].

MCTS is a search technique that builds an asymmetric tree
by performing random sequences of actions and gathering
statistics about the actions and states visited [24]. The main
algorithm is divided into four steps: Selection is guided by a

tree policy, choosing actions from the root of the tree down
to a non fully expanded node, balancing exploitation of the
best actions and exploration of the others. Once a non fully
expanded node has been reached, a new node is added as
a child of this one to the tree and a random roll-out (or
sequence of actions) is executed up to a certain depth L. The
state reached at this point is evaluated with an heuristic (see
Section IV-C2), and the visit count and average reward are
updated in all visited nodes of the tree during this iteration.

As MCTS is an anytime algorithm, it can be stopped
when the thinking budget is exhausted, and it returns the best
action (in terms of average reward, number of visits, or other
recommendation policies) from the root to be executed in the
real game. For more information about the algorithm, variants
and applications, the reader is referred to [24].

C. Macro-Actions and Value Function

Both algorithms employed in this study share two main
components: the heuristic (or value function used to evaluate a
given state) and the way actions are grouped in macro-actions.

1) Macro-Actions: We define macro-action as a sequence
or repetition of an action, 〈a1, . . . , am〉, during M steps.
Executing a macro-action consists of playing the sequence
of actions contained within it. It is possible to argue that the
macro-actions employed in this study are the simplest possible,
but previous works on this area showed that this can be an
effective method [17].

The benefits of using macro-actions is two-fold. Firstly, they
permit the execution of longer evaluations before making the
decision of the action to execute. While in a single-action
scenario, the algorithm has 40ms to decide the next action,
macro-actions of size M have M × 40ms to choose a move.
The reason is that the previous macro-action also needed M
time steps to be executed2. Note that, for every time step, only
one action (the next in the current macro-action) is returned
and executed in the real game.

Secondly, the size of the problem is reduced and the
ability to perform forward planning by the algorithms tested
is improved, at the expense of losing granularity on the
decision process. However, modifying a single action in a
given sequence may not produce a big impact, while it may
bring a better performance because of the farther lookahead.

The experiments described in this paper employ different
macro-action lengths M , and a distinct number of macro-
actions per tree play-out (for MCTS) or individual evaluation
(RHEA). The number of macro-actions is referred to in this
paper as L, thus the total algorithm lookahead is L × M .
Algorithm 1 shows the macro-action handler, common for both
MCTS and RHEA.

2) Value Function: As the focus of the experimental work
of this paper is set on the search capabilities of the algorithms,
the heuristic function to evaluate states has been chosen in
terms of simplicity. The value of the state is calculated as the
score of the game at that given moment, plus a high number

2With the exception of the very first move, with no previous action.



Game Description

Artillery
An AimedAvatar which shoots bullets affected by gravity. These bullets can break or bounce off certain special sprites and they can push
boulders. The player wins if they are able to hit (and kill) all the devils within the level, with either bullets or boulders. They lose when
the timer runs out. 1 point is given for every devil killed.

Asteroids A SpaceShipAvatar which shoots bullets. The bullets can break certain special sprites and kill aliens. The player wins if they are able to
kill all aliens within the level and loses if they crash into a sprite. 1 point is given for every alien killed.

Bird A BirdAvatar affected by gravity. The player wins if the avatar touches the green section of the level (goal) and loses if they touch a red
section (pipe). 1 point is given for every coin collected.

Bubble
A FlakAvatar (sideways movement only) which shoots bullets upwards. The bullets can be used to split bubbles that bounce around the
level. Once a bubble reaches a small enough size, it will be destroyed when hit, rather than splitting. The player wins if they remove all
bubbles from the level and loses if they touch a bubble. 1 point is given for every bullet that hits a bubble.

Candy
A WizardAvatar which can create or destroy blocks that are directly in front of it. The avatar can jump on top of these blocks to reach
certain locations. There are enemies which will move back and forth along the ground. The player wins if they touch the goal and loses if
they touch an enemy or fall outside of the level space. 1 point is given for each egg collected.

Lander A LanderAvatar which is affected by gravity. The player wins if the avatar touches a blue section with a slow enough speed while facing
upwards, and loses if they touch any other object. No points are given.

Mario

A PlatformerAvatar which is affected by gravity. Certain sections of the floor can carry the avatar and other objects upwards, similar to an
elevator. There are zombies of sprite type Walker and sharks of type WalkerJumper. Zombies and sharks can both be killed by the avatar
jumping on top of them. Boulders can be pushed to allow the player to cross fire. The player wins if they touch the mushroom and loses
if they touch either an enemy (unless from above), fire, or fall off the level space. 1 point is given for each coin collected or enemy killed.

Pong
An avatar which can only move up or down. There are balls that bounce off the walls and the avatar when they hit these sprite types. The
player wins if a ball touches the green section on the left of the level. They lose if a ball touches the green section on the right of the level.
No points are given.

PTSP An OrientedAvatar (only movement). There are enemy aliens that move randomly around the level. The player wins if they collect all the
green orbs and loses if they touch an alien. 1 point is given for every green orb collected.

Racing A CarAvatar. The player wins if they collect all blue squares and loses if they touch a red section of the level. 1 point is given for every
blue square collected.

Table I: Games in the first continuous physics set of the GVGAI Competition.

Algorithm 1 Algorithm to handle macro-actions (from [17]).
1: function GETACTION(GameState : gs)
2: if ISGAMEFIRSTACTION(gs) then
3: actionToRun← DECIDEMACRO(gs)
4: else
5: for i = 0→ remainingActions do
6: GS.ADVANCE(actionToRun)

7: if remainingActions > 0 then
8: if resetAlgorithm then
9: ALGORITHM.RESET(gs)

10: resetAlgorithm← false

11: ALGORITHM.NEXTMOVE(gs)
12: else . remainingActions is 0
13: actionToRun← DECIDEMACRO(gs)

14: remainingActions = (remainingActions− 1)
15: return actionToRun
16:
17: function DECIDEMACRO(GameState : gs)
18: actionToRun← ALGORITHM.NEXTMOVE(gs)
19: remainingActions←M
20: resetAlgorithm← true
21: return actionToRun

(106) if the game is finished in a victory for the agent (−106
in case of a loss).

V. EXPERIMENTAL WORK

An extensive experimental work has been put in place to
study the performance of the algorithms described in Sec-
tion IV in the games detailed in Table I. These algorithms

are MCTS and RHEA, although a deeper study has been
performed in the latter case, varying the size of the population
for the EA. The population sizes P tried are 1, 5 and 10, and
results are reported for these agents as RHEA-1, RHEA-5 and
RHEA-10, respectively.

Different lookaheads have been explored for all algorithms,
aiming to explore how farther simulations into the future
affect the victory rates on these games. The lookahead values
employed are 30, 60, 90 and 120 steps from the current game
state. These lookahead values are reached by a combination of
macro-action length M and simulation depth L (or individual
length for the RHEA agents), and different configurations have
been explored to measure the effect of M . Additionally, an
extra configuration has been run for all controllers, where no
macro-actions and a simulation depth of 10 has been used.
This is a useful setting for comparisons, as it is the default
depth of the controllers as provided in the GVGAI framework.

• L×M = 10; (L,M) = (10, 1).
• L×M = 30, with: (30, 1),3 (5, 6), (3, 10), (2, 15).
• L×M = 60, with: (60, 1), (6, 10), (4, 15), (2, 30).
• L×M = 90, with: (90, 1), (9, 10), (6, 15), (3, 30).
• L×M = 120, with: (120, 1), (12, 10), (8, 15), (4, 30).

Each one of these configurations is tested with our 4 agents,
playing 100 times per game: 20 repetitions of the 5 levels in
the 10 available games. A budget of 900 forward model calls
is assigned for each game tick an agent must return an action.

3Note that the first configuration per lookahead is equivalent to no macro-
actions but longer individual length or simulation depth.



Game RHEA-1 RHEA-5 RHEA-10 MCTS
Artillery 39.00 (4.88) 35.00 (4.77) 32.00 (4.66) 41.00 (4.92)
Asteroids 3.00 (1.71) 10.00 (3.00) 17.00 (3.76) 31.00 (4.62)

Bird 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Bubble 23.00 (4.21) 53.00 (4.99) 72.00 (4.49) 77.00 (4.21)
Candy 3.00 (1.71) 2.00 (1.40) 2.00 (1.40) 4.00 (1.96)
Lander 0.00 (0.00) 2.00 (1.40) 3.00 (1.71) 8.00 (2.71)
Mario 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Pong 69.00 (4.62) 68.00 (4.66) 63.00 (4.83) 67.00 (4.70)
PTSP 1.00 (0.99) 4.00 (1.96) 3.00 (1.71) 4.00 (1.96)

Racing 30.00 (4.58) 52.00 (5.00) 55.00 (4.97) 66.00 (4.74)

Total 16.80 (2.27) 22.60 (2.72) 24.70 (2.75) 29.80 (2.98)

Table II: Results of the controllers with their default L = 10.

A. Average Victory Rates

Table II shows the results with the default depth of 10 single
actions. Attending to the last row of the table (average victory
rate over 100 games played, plus standard error between brack-
ets), it seems MCTS perform better than the rolling horizon
methods on this setting and that longer higher population sizes
help RHEA to achieve a better performance, very close to
MCTS in P = 10. Furthermore, these results offer a glimpse
in the complexity of having games of different nature. Most of
the games are dominated by MCTS, although in some games
the P = 10 version of RHEA achieves a similar performance.
However, other games like Bird, Lander, Mario and PTSP
have a very low victory rate, in some cases with no games
won in none of the configurations.

Table III shows the results of all configurations averaged
across games, for all the runs that span across macro-action
configurations, lookaheads and agents. The first conclusion
quickly observed is that the results with M = 1 are far better
than their counterparts. This is true for most cases, and, in fact,
there is a regular trend that can be observed showing victory
rates dropping as the length of the macro-action increases.

There are other interesting remarks to make about these
results, especially in comparison with Table II. In general, it
can be observed that RHEA usually improves performance
when adding macro-actions of small lengths (second column
of Table III), with the level of improvement decreasing as
M gets higher. Regarding the change in population size for
RHEA, it can be seen that performance typically increases
when P is higher (which has also been observed in [19]),
but only if the length of the macro-action is short. Larger
populations with longer macro-actions reduce the performance
of the algorithm to its worst results in this comparison. These
results seem to suggest that a finer control for macro-actions
benefit the agents at gameplay.

Similarly, MCTS also obtains the best average results with
shorter macro-actions, typically M = 1 and M = 10, and
results get worse when M increases beyond that point. It
would be easy to rule out the macro-actions idea if it was
not because of the improvement made in RHEA, but also if
the results on a game by game basis were ignored. Next, a
deeper analysis considering the results per game is given.

L × M: 30× 1 5× 6 3× 10 2× 15
RHEA-1 14.50 (2.10) 21.80 (3.29) 19.60 (3.16) 14.60 (2.46)
RHEA-5 31.60 (3.12) 32.90 (4.18) 22.40 (3.51) 14.70 (2.62)

RHEA-10 36.50 (3.15) 28.80 (4.06) 20.40 (3.43) 14.10 (2.67)
MCTS 46.00 (3.02) 48.40 (4.28) 41.30 (3.72) 20.50 (2.74)

L × M: 60× 1 6× 10 4× 15 2× 30
RHEA-1 14.10 (1.93) 22.70 (3.30) 19.10 (2.88) 11.80 (2.15)
RHEA-5 33.40 (3.05) 31.50 (4.08) 27.30 (3.74) 12.20 (2.42)

RHEA-10 39.50 (3.10) 24.90 (3.73) 23.00 (3.62) 10.00 (2.23)
MCTS 46.90 (3.01) 46.40 (4.40) 26.70 (2.60) 5.10 (1.45)

L × M: 90× 1 9× 10 6× 15 3× 30
RHEA-1 12.00 (2.11) 19.40 (3.09) 17.70 (2.88) 14.00 (2.31)
RHEA-5 32.80 (3.06) 30.90 (4.04) 28.70 (3.76) 17.70 (2.74)

RHEA-10 37.30 (3.10) 25.70 (3.89) 24.60 (3.70) 13.70 (2.52)
MCTS 46.90 (3.08) 45.80 (4.56) 25.90 (3.28) 9.00 (1.82)

L × M: 120× 1 12× 10 8× 15 4× 30
RHEA-1 14.10 (2.13) 20.50 (3.18) 17.10 (2.79) 12.80 (2.14)
RHEA-5 33.40 (3.07) 30.50 (3.92) 27.30 (3.64) 20.00 (2.74)

RHEA-10 36.00 (3.03) 25.10 (3.69) 24.20 (3.53) 15.90 (2.64)
MCTS 44.40 (3.14) 48.40 (4.55) 24.40 (3.15) 11.00 (2.15)

Table III: Results for all algorithms and configurations. Indi-
cated values are the average of victories across all games, with
the standard error between brackets. Results in bold mark the
best performances for RHEA and MCTS.

B. Game Victory Rates

When looking at the results per game from the experimental
work described here, it is noticeable that there is a strong
dependency on the game in terms of algorithm, lookahead
and the use of macro-actions. Table IV shows the results for
configuration L ×M = 30 in all games separately. Results
for other configurations are not included here for the sake of
space, but similar trends showcase in all cases.

In many games, as expected after presenting the overall
results, average victory rates are higher with macro-action
lengths of M = 1 and M = 10. However, some games
show a different behaviour. The most interesting result is
the performance shown for those games that were unable to
achieve a decent number of victories with no macro-actions.
As seen previously in Table II, these games are Bird, Lander,
Mario and PTSP, and in all of them the use of macro-actions
increases the victory rate in a greater or lesser extent. For
instance, in Bird, Lander and PTSP, the use of macro-actions
improves the performance from approximately 0% victory
rate to values between 30% and 50% in different settings.
Both games present scenarios where a longer lookahead may
be beneficial, but not without a finer degree of control. A
lookahead of 30 (rather than 10, as in the results of Table II)
does not guarantee an improvement in performance, but using
macro-actions to simultaneously reduce the search space does
(i.e. RHEA-5 increasing to 45% of victories). In fact, it’s not
surprising that PTSP is a game where macro-actions work
well, it was particularly in that game where these macro-
actions were originally introduced [7]!

There is also a small performance raise in Mario, in this case
the victory rates increase from 0% to less than 20%. Although
this is a noticeable improvement, it’s smaller than in other



Algorithm: RHEA-1 RHEA-5
L × M: 30× 1 6× 5 3× 10 2× 15 30× 1 6× 5 3× 10 2× 15

Artillery 34.00 (4.74) 12.00 (3.25) 3.00 (1.71) 3.00 (1.71) 52.00 (5.00) 11.00 (3.13) 3.00 (1.71) 6.00 (2.37)
Asteroids 0.00 (0.00) 3.00 (1.71) 2.00 (1.40) 0.00 (0.00) 36.00 (4.80) 19.00 (3.92) 0.00 (0.00) 0.00 (0.00)

Bird 0.00 (0.00) 22.00 (4.14) 30.00 (4.58) 15.00 (3.57) 0.00 (0.00) 45.00 (4.97) 22.00 (4.14) 13.00 (3.36)
Bubble 18.00 (3.84) 37.00 (4.83) 27.00 (4.44) 13.00 (3.36) 68.00 (4.66) 45.00 (4.97) 35.00 (4.77) 14.00 (3.47)
Candy 1.00 (0.99) 4.00 (1.96) 0.00 (0.00) 0.00 (0.00) 6.00 (2.37) 22.00 (4.14) 7.00 (2.55) 0.00 (0.00)
Lander 1.00 (0.99) 7.00 (2.55) 7.00 (2.55) 0.00 (0.00) 4.00 (1.96) 29.00 (4.54) 16.00 (3.67) 0.00 (0.00)
Mario 0.00 (0.00) 0.00 (0.00) 5.00 (2.18) 4.00 (1.96) 0.00 (0.00) 2.00 (1.40) 16.00 (3.67) 8.00 (2.71)
Pong 60.00 (4.90) 61.00 (4.88) 42.00 (4.94) 52.00 (5.00) 79.00 (4.07) 65.00 (4.77) 45.00 (4.97) 35.00 (4.77)
PTSP 1.00 (0.99) 36.00 (4.80) 42.00 (4.94) 35.00 (4.77) 13.00 (3.36) 50.00 (5.00) 48.00 (5.00) 42.00 (4.94)

Racing 30.00 (4.58) 36.00 (4.80) 38.00 (4.85) 24.00 (4.27) 58.00 (4.94) 41.00 (4.92) 32.00 (4.66) 29.00 (4.54)

Algorithm: RHEA-10 MCTS
L × M: 30× 1 6× 5 3× 10 2× 15 30× 1 6× 5 3× 10 2× 15

Artillery 57.00 (4.95) 13.00 (3.36) 9.00 (2.86) 3.00 (1.71) 51.00 (5.00) 33.00 (4.70) 4.00 (1.96) 0.00 (0.00)
Asteroids 48.00 (5.00) 12.00 (3.25) 1.00 (0.99) 1.00 (0.99) 85.00 (3.57) 36.00 (4.80) 24.00 (4.27) 4.00 (1.96)

Bird 0.00 (0.00) 36.00 (4.80) 22.00 (4.14) 8.00 (2.71) 0.00 (0.00) 30.00 (4.58) 27.00 (4.44) 20.00 (4.00)
Bubble 79.00 (4.07) 28.00 (4.49) 17.00 (3.76) 12.00 (3.25) 97.00 (1.71) 50.00 (5.00) 87.00 (3.36) 38.00 (4.85)
Candy 6.00 (2.37) 17.00 (3.76) 5.00 (2.18) 1.00 (0.99) 9.00 (2.86) 56.00 (4.96) 8.00 (2.71) 1.00 (0.99)
Lander 10.00 (3.00) 17.00 (3.76) 9.00 (2.86) 0.00 (0.00) 49.00 (5.00) 58.00 (4.94) 35.00 (4.77) 0.00 (0.00)
Mario 0.00 (0.00) 8.00 (2.71) 9.00 (2.86) 8.00 (2.71) 0.00 (0.00) 18.00 (3.84) 14.00 (3.47) 1.00 (0.99)
Pong 80.00 (4.00) 69.00 (4.62) 52.00 (5.00) 35.00 (4.77) 80.00 (4.00) 100.00 (0.00) 94.00 (2.37) 62.00 (4.85)
PTSP 15.00 (3.57) 48.00 (5.00) 47.00 (4.99) 40.00 (4.90) 16.00 (3.67) 47.00 (4.99) 61.00 (4.88) 36.00 (4.80)

Racing 70.00 (4.58) 40.00 (4.90) 33.00 (4.70) 33.00 (4.70) 73.00 (4.44) 56.00 (4.96) 59.00 (4.92) 43.00 (4.95)

Table IV: Results per game in the configuration L×M = 30. Averages and standard errors of the measures indicated in bold
when better than the other variants (italics where the best result is shared).

cases. A possible reason for this is that Mario requires longer
planning in conjunction with fast reaction to avoid enemies and
hazards in the levels. A deeper research in platformer games
may be required to tackle this type of games in a general
context, which is also a new kind in the GVGAI framework.

Dependency on algorithms and macro-action lengths is also
present in other games. For instance, in the game Bird (see
Figure 2), there’s a clear difference between using distinct
lookaheads and macro-action lengths. The best performance is
achieved when the lookahead is 90 and 120, with 60% victory
rate, achieved by MCTS. However, all RHEA approaches are
better than MCTS with the shorter lookahead (L×M = 30),
and M = 1 shows practically no victories for all agents.

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced a new type of physics for the
General Video Game AI (GVGAI) Framework, which aim
to enhance the possibilities of the benchmark to reproduce
real-world physics. Elements such inertia, gravity or friction
are now part of the framework and a set of new games has
been presented with some initial experimentation. The effects
of these elements may have an impact on the way agents
play these games, thus an initial study has been performed
and presented in this paper with several agents. Additionally,
this work extends the GVGAI agents to include the concept
of macro-actions. An extensive experimental study has been
conducted and reported here, in order to analyze the behaviour
of two different agents, Rolling Horizon Evolutionary Algo-
rithm (RHEA) and Monte Carlo Tree Search (MCTS), with
and without macro-actions and different lookaheads.

One of the main conclusions that can be drawn from the
results is that there is no algorithm that dominates all the

others. This finding is typically seen in GVGAI, as the best
configurations depend highly on the game at stake. In the
default case (with no macro-actions and shorter simulation
depths), MCTS performs better on average in the games of
this set. The use of macro-actions boosts the performance of
both algorithms, and it is worthwhile highlighting that in some
of these cases (4 out of the 10 games used) victories can’t
be achieved without macro-actions. Generally, shorter macro-
actions produce better results than longer ones. Additionally,
it seems plausible that macro-actions help the algorithms
perform better in games that are more complex because of a
need of more fine tuned control. However, there’s the necessity
of finding the appropriate value of the macro-action length for
each game, as, depending on the game characteristics, finer or
coarser control may be preferred.

The results suggest that it would be interesting to investigate
how to decide the appropriate macro-action length in-game,
given that it is not possible to provide a general length that
works well in all scenarios. This would work on the lines
of meta-heuristic controllers, which have been showcased in
winners of the past editions of the GVGAI Competition [25]. It
seems sensible that developing a meta-agent able to tweak its
internal parameters and algorithms based on the game played
should be the natural next step of this research.

But there are also different avenues for future work. For
instance, no work has been done in the use of macro-actions in
grid-physics games in GVGAI, although it seems natural that
different macro-action lengths will be also needed per game.
It is our intuition (corroborated by some preliminary tests)
that the lengths would actually vary significantly in the grid-
physics games, as only very short macro-actions have shown
to provide good results. Although it is possible that better



Figure 2: Victory rate (with standard error bars) in the game Bird, for all algorithms and configurations.

results can be obtained with macro-actions more complex than
a simple repetition of actions. Ideally, an approach that could
bring good performance to the agents would be one where
each action is more involved, performing moves such as path-
finding to the closest sprite of a given type, escape from a
given location, or simply provide a specific sequence of actions
derived from the current state of the game.

Last but not least, the addition of real-world physics may
still be enhanced, for instance adding continuous actions for
the agent. In this cases, the controllers would provide an action
within a given range (i.e. [−1, 1] for steering, or [0, 1] for
throttling in a racing game), which would open the framework
to not only a new dimension of games, but also adding
interesting aspects to the other tracks of the competition [25].

ACKNOWLEDGMENTS

This work was partly funded by the EPSRC Centre for
Doctoral Training in Intelligent Games and Game Intelligence
(IGGI) EP/L015846/1.

REFERENCES

[1] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas,
A. Couetoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General
Video Game Playing Competition,” in IEEE Transactions on Computa-
tional Intelligence and AI in Games, vol. 8, no. 3, 2016, pp. 229–243.

[2] R. D. Gaina, D. Perez-Liebana, and S. M. Lucas, “General Video Game
for 2 Players: Framework and Competition,” in Proceedings of the IEEE
Computer Science and Electronic Engineering Conf., 2016.

[3] J. Togelius, N. Shaker, S. Karakovskiy, and G. N. Yannakakis, “The
Mario AI Championship 2009-2012,” AI Magazine, vol. 34, no. 3, pp.
89–92, 2013.

[4] M. Nicolau, D. Perez-Liebana, M. O’Neill, and A. Brabazon, “Evo-
lutionary Behavior Tree Approaches for Navigating Platform Games,”
IEEE Trans. on Computational Intelligence and AI in Games, 2016.

[5] D. Perez, P. Rohlfshagen, and S. M. Lucas, “The Physical Travelling
Salesman Problem: WCCI 2012 Competition,” in IEEE Congress on
Evolutionary Computation (CEC), 2012, pp. 1–8.

[6] D. Perez, E. Powley, D. Whitehouse, S. Samothrakis, S. Lucas, and
P. I. Cowling, “The 2013 Multi-Objective Physical Travelling Salesman
Problem Competition,” in IEEE Congress on Evolutionary Computation
(CEC), 2014, pp. 2314–2321.

[7] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samothrakis,
P. I. Cowling, and S. M. Lucas, “Solving the Physical Traveling
Salesman Problem: Tree Search and Macro Actions,” IEEE Trans. on
Computational Intelligence and AI in Games, vol. 6:1, pp. 31–45, 2014.

[8] R. Prada, P. Lopes, J. Catarino, J. Quiterio, and F. S. Melo, “The
Geometry Friends Game AI Competition,” in IEEE Conference on
Computational Intelligence and Games (CIG), 2015, pp. 431–438.

[9] J. Renz et al., “AIBIRDS: The Angry Birds Artificial Intelligence
Competition,” in AAAI, 2015, pp. 4326–4327.

[10] D. Loiacono et al., “The 2009 Simulated Car Racing Championship,”
IEEE Trans. on Computational Intelligence and AI in Games, vol. 2,
no. 2, pp. 131–147, 2010.

[11] D. Perez, G. Recio, and Y. Saez, “Evolving a Fuzzy Controller for
a Car Racing Competition,” in IEEE Symposium on Computational
Intelligence and Games (CIG), 2009, pp. 263–270.

[12] E. Onieva, D. A. Pelta, J. Godoy, V. Milanés, and J. Pérez, “An
Evolutionary Tuned Driving System for Virtual Car Racing Games:
The AUTOPIA Driver,” International Journal of Intelligent Systems,
vol. 27:3, pp. 217–241, 2012.

[13] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[14] R.-K. Balla and A. Fern, “UCT for Tactical Assault Planning in Real-
Time Strategy Games,” in IJCAI, vol. 40, 2009, p. 45.

[15] G. Eyck and M. Müller, “Revisiting Move Groups in Monte-Carlo Tree
Search,” in Springer Advances in Computer Games, 2011, pp. 13–23.

[16] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Determinization in
Monte-Carlo Tree Search for the Card Game Dou Di Zhu,” Proc. Artif.
Intell. Simul. Behav, pp. 17–24, 2011.

[17] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, “Rolling Hori-
zon Evolution Versus Tree Search for Navigation in Single-Player Real-
Time Games,” in Proceedings of Genetic and Evolutionary Computation
Conference. ACM, 2013, pp. 351–358.

[18] T. Schaul, “A Video Game Description Language for Model-Based or In-
teractive Learning,” in IEEE Conference on Computational Intelligence
in Games (CIG), 2013, pp. 1–8.

[19] R. D. Gaina, J. Liu, S. M. Lucas, and D. Perez-Liebana, “Analysis of
Vanilla Rolling Horizon Evolution Parameters in General Video Game
Playing,” in Springer Lecture Notes in Computer Science, EvoApplica-
tions, 2017.

[20] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Population Seeding
Techniques for Rolling Horizon Evolution in General Video Game
Playing,” in IEEE Congress on Evolutionary Computation (CEC), 2017,
pp. 2314–2321.

[21] D. Silver et al., “Mastering the Game of Go with Deep Neural Networks
and Tree Search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[22] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the AAAI competition,” AI magazine, vol. 26, no. 2, p. 62, 2005.

[23] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade
Learning Environment: An Evaluation Platform for General Agents,” J.
Artif. Intell. Res.(JAIR), vol. 47, pp. 253–279, 2013.

[24] C. B. Browne et al., “A Survey of Monte Carlo Tree Search Methods,”
IEEE Trans. on Computational Intelligence and AI in Games, vol. 4:1,
pp. 1–43, 2012.

[25] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “General video game ai: Competition, challenges and opportu-
nities,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.


