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Abstract—There has been growing interest in modern board
games, which have been increasing in complexity with respect to
their classic counterparts (e.g. Chess, Go), by utilizing new me-
chanics and novel ways to interact with them, resulting in richer
player interaction. Boardgamegeek.com (BGG) is the biggest
forum for board games and it now has registered 191 different
mechanics. Users can rate games on the forum and BGG will rank
them accordingly. This work aims to investigate how mechanics
relate to player ratings using a Decision Regression Tree (RT)
to predict the expected rating based on a game’s mechanics. To
achieve this we collect mechanics and player ratings data of all
ranked games on BGG and train our Regression Tree. After
training the RT and further extending it with Random Forest
(RF), we use Mean Decrease in Impurity (MDI) and Permutation
Feature Importance (PFI) to evaluate how much each mechanic
influences the player ratings.

We show that, using only game mechanics, Regression Tree and
Random Forest can account for 28% and 32% of the variance in
games’ ratings, respectively. We highlight the interpretability of
RT and how it can be used to gain insights into the relationship
between game mechanics and player ratings.

Index Terms—board games, player ratings, machine learning,
decision tree, regression tree, random forest, feature importance

I. INTRODUCTION

Modern board games are a part of the games market that
has seen a steep increase in interest and size since 2010 [1].
For researchers, board games have been a topic of interest
even earlier. They have been using them applied to fields like
health and education. Even before that, classical board games
like Chess, Go, Checkers, etc. have seen a lot of research
interest, particularly in Artificial Intelligence (AI), where the
focus is on creating game-playing agents [2].

However, serious research on the structure and design of
modern board games is more recent than those applications.
The first-ever catalog of game mechanics was published in
2019 [3] while the Game Ontology Project, a big catalog for
digital games, [4] started in the early 2000s.

One problem of board game research is the difficulty of
obtaining data. BoardGameGeek.com (BGG) is a forum with
over 100,000 board game entries and thousands of users [5]
and the only major source of board game data. Although it
is readily available and has a substantial amount of data, it is
still lacking in many aspects, most of the data provided are
crowd-sourced by users and not experts. While this does make

it invaluable as a source of player opinion, it lacks the polish
necessary for some research. Many researchers need to adapt
the data to fit their intended work [1].

BGG data has been used to inform research, as either a
selection criteria for games based on user ratings [6], or to
better differentiate between mechanisms [7]. Other authors
analyze BGG data directly, with mixed results, to evaluate
the relation between game attributes and player motivation, or
to highlight a positive correlation between game attributes and
success (and related board game trends) [8].

Samarashinghe et al. [1] pushed this idea by making a
thorough data analysis, limited to only the top 10,000 games
on BGG. They investigated the correlation between mechanics
and player-voted attributes, such as complexity, rating, and
duration. Using correlation and co-occurrence analysis, they
conclude that neither the number of mechanics in a game, nor
the average mutual information of mechanics contributes to
complexity and rating. However, they draw this conclusion
using simple statistical methods. On the other hand, our
work considers every ranked game (over 20,000) and applies
machine learning methods to analyze the importance of each
individual mechanic in predicting a game’s rating.

For this work, we obtain the data on board games available
on BGG using their public API and filter it to games with at
least 30 user ratings (the minimum requirement for a game
to be ranked on BGG). Regression Tree [9] and Random
Forest [10] are fitted on the filtered data to predict the player
rating of a game based on its mechanics. Using mean decrease
in impurity (MDI) and permutation feature importance (PFI)
[10], we analyze the relationship between each mechanic and
game ratings through feature importance, i.e. how much does
the presence (or absence) of a mechanic affect how predictive
the model is.

We aim to improve on existing research by using a Machine
Learning (ML) approach to obtain new insights into how
mechanics can be used to understand player ratings. This
contrasts with previous works where only traditional statistical
techniques were used.

Additionally, we highlight the advantages of using a simple
Regression Tree model to understand how mechanics interact
with each other to affect player ratings. The simplicity and
interpretability of the tree structure will provide insight for
designers if combinations of mechanics behave differently than
their separate implementations.

Our objective is to analyze the relationship between BGG979-8-3503-5067-8/24/$31.00 ©2024 IEEE



ratings and the game mechanics. We can then identify what
mechanics have a high impact on ratings and which have little
impact. Game designers will be able to make a more informed
decision when creating their game’s mechanics, and publishers
will also benefit from understanding which mechanics yield
better results.

With this, we provide important insight for future research
by investigating how mechanics relate to ratings and intro-
ducing a new framework for analyzing features of board
games. Furthermore, this can provoke designers to investigate
particular mechanics and why they are successful.

II. DATA

The data provided by the BGG API contains all information
shown on an item’s BGG page1. The Python code used for data
collection is available on GitHub2 The fields we collected are
detailed in the metadata.yaml file in this same repository. BGG
differentiates games with a unique identifier gameID for every
game. Our raw data had 117,859 unique IDs.

We are mainly interested in the data fields: ratings, mechan-
ics, and re-implementations.

Rating average is the average rating of all BGG users who
rated the game. This is our target for prediction. We filter out
games with less than 30 ratings (i.e. we take only the ranked
games).

The mechanics in each game are features that we use to
predict the rating of a game. The raw data has 191 different
mechanics, which means it features all possible mechanics in
the BGG list. The most frequent mechanic (Dice Rolling) is
present in 26, 774 games while the least frequent (Auction:
Compensation) is only in 4 games. Notably, half of the
mechanics appear in only 264 games, less than 0.01% of the
full dataset.

BGG has also a record of game re-implementations, which
is a game that has been re-released either as a new edition
with revised rules or with a different theme. As they are the
same game, to avoid giving more weight to a particular set
of mechanics, we merge re-implementations with identical
mechanics into a single entry with a rating equal to the
weighted average of all the merged entries.

After removing non-ranked games and filtering the re-
implementations we have a total of 23, 113 games. The highest
rating average in the resulting dataset is 9.70 and the lowest
is 1.16. Its histogram (omitted due to space) adheres approx-
imately to a normal distribution with a mean of around 6.45
and a standard deviation of 0.93.

III. METHODOLOGY

We use Decision Regression Tree [9] and Random Forest
[10] to predict the rating average of a game based on its
mechanics. Each mechanic is a binary feature, valued 0 and 1
for its absence and presence, respectively.

1Catan, for example: https://boardgamegeek.com/boardgame/13/catan
2https://github.com/HuntedSouls/BGGMechsAndRatings

Decision Regression Tree (RT) fits our data and pur-
poses well with its nonparametric approach, inherent binary
structure, and interpretability. The nonparametric approach of
RT makes little assumption about the relationship between
the features, the response variable and the underlying data
distribution, which is essential for our investigation into the
relationship between mechanics and players’ ratings.

Our tree is built to maximize the variance reduction of
the training samples, i.e. the difference between the training
samples variance and the weighted average of the variance at
each leaf node:

IS(T ) = V ar(S)−
∑
i

|Li|
|S|

V ar(Li) (1)

Here, T is the regression tree model, S is the set of training
samples, and Li is the set of samples at the ith leaf node.
V ar(X) is the ratings’ variance of samples in X . Our goal is
to maximize IS(T ).

Therefore, each leaf node is optimized to contain board
games with overlapped mechanics and similar ratings to
minimize its variance. Consequently, RT automatically selects
mechanics that are most relevant to the ratings in a hierarchical
structure.

Since searching for the optimal structure for RT is NP-
complete [11], we use a greedy best-first search to decide what
to split. At each step, we select which node and which feature
to split the node to maximize the variance reduction on the
leaf nodes.

Random Forest (RF) is an extension of RT, where predic-
tions are based on ensembles of regression trees. Each tree in
RF is intentionally built to overfit a subset of data sampled
with replacement from the training data (bootstrapping). At
each split of a tree in RF, only a random subset of features
are considered as candidates (candidate set).

Fitting multiple trees within the model makes RF less
interpretable than RT, but in turn more robust with better
predictive power.

To analyze feature importance we use Mean Decrease
in Impurity (MDI) and Permutation Feature Importance
(PFI). MDI [9] is simply the normalized total variance reduc-
tion of a feature whenever it is used for splitting a node. In
other words, the MDI of a feature is how much of variance
reduction by the model can be attributed to that feature. For
example, a mechanic with MDI 0.09 means 9% of the variance
reduction of the model is due to a game having or not having
that mechanic.

The permutation feature importance [10] of a feature mea-
sures the decrease of the model’s score on test data when
values of the feature are permuted in the data.

Due to the weakness of greedy search and MDI’s bias for
local variance reduction, it may not be the most reliable metric
to measure feature importance. On the other hand, PFI makes
no assumption on the structure of the model, which results in
a more robust and general metric.

https://boardgamegeek.com/boardgame/13/catan
https://github.com/HuntedSouls/BGGMechsAndRatings


Model R2 score
Regression Tree (RT) 0.277± 0.01
Random Forest (RF) 0.315± 0.008

TABLE I
REGRESSION TREE AND RANDOM FOREST AVERAGE R2 SCORE AND

STANDARD DEVIATION ON TEST DATA IN 100 RUNS

IV. EXPERIMENT AND ANALYSIS

Scoring We use R2 as the metric to evaluate how predictive
our models are on the test data, as shown in Equation 2:

R2 = 1−
∑N

i=1(yi − f(xi))
2∑N

i=1(yi − ȳ)2
(2)

N is the number of data points, xi is the mechanic feature
vector and yi is the rating of the ith game, respectively, ȳ is
the average of ratings, and f is our model. The fraction is the
ratio between the mean-squared error of the base model (i.e.
all inputs are predicted with the data average) and our trained
model. Thus, we interpret R2 as the portion of the rating
variance that our models can explain using only mechanics.
That is, given a set of games, R2 is how much their rating
variance can be accounted for by the differences in mechanics.

Hyperparameters The Regression Tree model is con-
strained to have a minimum of 20 samples per leaf node. The
Random Forest model uses 50 trees, candidate set of length
⌊
√
D⌋ = 13 where D is the total number of mechanics (191),

and bootstrapped samples of size NTr/4 where NTr is the
size of the training data. These hyperparameters are found to
perform the best based on preliminary trial and error.

We shuffle and split our data into a training set and a test
set; the training set has NTr = 18, 000 games and the test
set has NT = 5, 113 games. We fit our models on training
data and evaluate their R2 score on test data for 100 runs; for
each run, the data is shuffled differently. Table I shows each
model’s average R2 score and its standard deviation.

The average R2 score of RF and RT are 0.315 and 0.277,
respectively. RF performs better while also appearing to be
more stable against data shuffling across runs, evident by RF’s
lower variance. Nonetheless, RT by itself is not much worse,
capable of explaining 28% of the variance in board games’
ratings from their mechanics alone.

The R2 scores of both models suggest that there are
relationships between the mechanics of a game and its ratings.

Feature Importance Analysis With the same 100 runs, we
collected the MDI of each feature in each run. PFI of both RT
and RF is evaluated with 30 permutations per feature. PFI is
done only once due to computational cost. Table II illustrate
the top-5 scoring in each analysis.

The top-5 mechanics are virtually unchanged across all
metrics of feature importance. Roll / Spin and Move is con-
sistently the most important mechanic by a large margin in
predicting the rating of a game. Splitting the entire dataset
by the presence/absence of this mechanic shows that games
with it have an average rating of 5.45 ± 0.026, while games
without it have an average rating of 6.48± 0.007 (Figure 1).

Mechanic Tree Random forest %

M
D

I

Roll / Spin and Move 0.220± 0.005 0.107± 0.006 5.4
Solo / Solitaire Game 0.143± 0.004 0.066± 0.005 5.4

Variable Player Powers 0.081± 0.004 0.044± 0.003 10.9
Simulation 0.077± 0.005 0.042± 0.003 8.5

Hexagon Grid 0.045± 0.004 0.044± 0.003 9.9

PF
I

Roll / Spin and Move 0.104± 0.007 0.064± 0.004 5.4
Solo / Solitaire Game 0.053± 0.006 0.047± 0.004 5.4

Hexagon Grid 0.048± 0.004 0.041± 0.004 9.9
Variable Player Powers 0.039± 0.003 0.032± 0.003 10.9

Simulation 0.036± 0.004 0.031± 0.003 8.5
TABLE II

FIVE MOST RELEVANT MECHANICS ACCORDING TO MDI AND PFI
ACROSS 100 RUNS. THE PERCENTAGES REPRESENT THEIR PRESENCE IN
THE DATASET. RED HIGHLIGHT FOR NEGATIVE EFFECT ON RATINGS AND

GREEN FOR POSITIVE.

This echoes the consensus among many board game players
and designers that Roll / Spin and Move is a bad mechanic
[12].

On the other hand, every other mechanic in the top-5 has a
positive impact on the ratings when they do appear. Tree nodes
that are split by these mechanics tend to have higher averages
on the child nodes where these mechanics are present.

Another interesting fact is that the second most represented
mechanic, Hand Management, does not feature in the top-5
mechanics. Even though it is largely present in games it does
not have a big impact on the rating of the game. This mechanic
is present in very high-rated games like Brass: Birmingham
and Gloomhaven, both rated above 8.5. Whilst also featured in
games like Boogie Beast (5.1 rating) and Druids (4.8 rating).

Comparing the MDI and PFI numeric values between RT
and RF also supports the narrative that RF is more robust than
RT. Although the ranking of features is similar, the importance
of the first few features is not as extreme in RF as they are
in RT, implying RF is less dependent on the top mechanics to
make accurate predictions on the rating.

Regression Tree as a data exploration and analysis tool.
With such a comprehensive dataset, one might want to query
a subset of mechanics with the best rating. An exhaustive
analysis of every subset of mechanics is infeasible as there
are 2191 possible subsets.

The tree recursively partitions the dataset in a way that the
set of board games at any node is optimized to be as similar
as possible in both mechanics and ratings. Each node in a tree
represents a subset of mechanics that meaningfully contribute
to ratings, along with its estimated average for that subset.

In order to find the subset of mechanics with the best rating,
the reader can observe Figure 1 and descend from the root
node of the tree to the node with the highest average. In
this example, this node is the green-colored one (7.958 rating)
representing games with no Roll and Move, but with a Solo
Game option, Variable Player Powers, and Variable Set-Up.
This subset of mechanics is most likely not the best, but it is a
decent approximation. Due to the tree structure, it is possible
to look at each node on the path, see how tweaking a mechanic
affects ratings, and analyze its effect on the destination node.



Fig. 1. Regression tree (top nodes). In each node, µ is the average rating with
its standard error, n is the number of games. Bolded nodes are leaf nodes.
The green and orange outline indicate the nodes with the overall highest and
lowest average rating, respectively.

V. CONCLUSION

This research focuses on understanding and analyzing the
relationship between mechanics and player ratings using the
BoardGameGeek (BGG) data.

First, we analyzed the entirety of the BGG database, de-
viating from previous research [1] where only limited data
was analyzed. We define our approach focusing on player
ratings as a function of individual mechanics. This allows for
more granularity in our analysis and deeper insights into the
relationship between mechanics in player ratings.

Second, we show that, by using only mechanics as the input
features, a simple Regression Tree can achieve validation R2

score of 0.28 in predicting the ratings of board games, while
Random Forest improves the score to 0.31. This implies a
relationship between mechanics and player ratings, contrasting
with previous research. Using the Mean Decrease in Impu-
rity (MDI) and Permutation Feature Importance (PFI) of the
trained RT and RF, we demonstrate that some mechanics have
more impact on player ratings than others.

Third, we introduce Decision Regression Tree as a tool and
framework for data exploration and analysis of board game
data. We explain how one can interpret the tree structure in
the context of mechanics and how the algorithm automatically
learns an important subset of mechanics.

VI. FUTURE WORK

Results taken from quantitative analysis of BGG data should
be considered concerning a niche of players that rate games in
BGG. Although this can be a useful proxy to measure players’
reception, it does not provide an accurate measurement of the
whole population. In particular, it is not a good indicator for
the more casual player who does not use BGG often. Research
conducted directly with this audience could cover this gap,
perhaps by using questionnaires at places this audience goes
to, like board game cafes and local stores.

Furthermore, BGG’s current state of mechanics tags is
not consistent, as identified by its extreme redundancies and
under-classification. Predicting ratings based on mechanics is
a valuable result in itself. The fact that at least 27% of the
variance in ratings can be explained by a simple Regression
Tree based only on mechanics bears further investigation
by both researchers and designers. We aim to expand on
this with further analysis to identify if the mechanics are
dependent on each other concerning the ratings, that is, each
mechanic contributes individually or they depend on which
other mechanics are present in the game.

Using tree-based models for analyzing board game data is
a promising avenue of research to address the explainability
issue of other ML methods. Future research should focus on
using extensions to the basic Regression Tree that address
many of its weaknesses and apply them to the same dataset.

Improving tagging by creating a proper set of tags and
retroactively re-evaluating all games for this new set will prove
invaluable for future research. This can be done either through
expert curation throughout the database, or by using Informa-
tion Retrieval techniques on rulebooks or game synopsis [13].
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