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Abstract

Turn-based multi-action adversarial games are challenging
scenarios in which each player turn consists of a sequence
of atomic actions. The order in which an AI agent runs these
atomic actions may hugely impact the outcome of the turn.
One of the main challenges of game artificial intelligence
is to design a heuristic function to help agents to select the
optimal turn to play, given a particular state of the game.
In this paper, we report results using the recently developed
N-Tuple Bandit Evolutionary Algorithm to tune the heuris-
tic function parameters. For evaluation, we measure how the
tuned heuristic function affects the performance of the state-
of-the-art evolutionary algorithm Online Evolution Planning.
The multi-action adversarial strategy card game Legends of
Code and Magic was used as a testbed. Results indicate that
the N-Tuple Bandit Evolutionary Algorithm can effectively
tune the heuristic function parameters to improve the perfor-
mance of the agent.

1 Introduction
In turn-based multi-action adversarial games, each player
turn consists of several atomic actions and the order in which
the agent plays those actions has a significant influence in
the game. Evolutionary algorithms are the current state of
the art in this kind of games. They need a heuristic func-
tion (also known as fitness function) to estimate a score
about how good or bad it is to be in a particular state of
the game. Heuristic functions tend to have several param-
eters that should be tuned to obtain good results. Most of
the previous works manually tuned the parameters using ex-
pert knowledge and experience playing the game (Justesen,
Mahlmann, and Togelius 2016), (Baier and Cowling 2018).
An alternative solution is to use an evolutionary algorithm
to find the best parameter combination.

Recently, the N-Tuple Bandit Evolutionary algorithm
(NTBEA) (Lucas, Liu, and Perez-Liebana 2018) was pre-
sented as an effective method for parameter tuning. It is very
useful when the evaluation function of the game is noisy and
fairly expensive in CPU time, as is the case in multi-action
adversarial games. Hence, it is desirable to have an evolu-
tionary algorithm that can operate very efficiently, making
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the best possible use of the available fitness evaluation bud-
get, and also one that is robust to noise. NTBEA satisfies both
criteria. It has successfully been used to tune agent parame-
ters (Lucas et al. 2019). In this paper, NTBEA will be used
to tune the parameters of the heuristic function. This is the
main novelty of the paper.

The performance of the state-of-the-art evolutionary al-
gorithm Online Evolutionary Planning (OEP) (Justesen,
Mahlmann, and Togelius 2016), with the heuristic func-
tion parameters tuned using NTBEA, was assessed. It has
been previously tested on the game HeroAIcademy. In-
stead, in this paper, the multi-action adversarial strategy card
game Legends of Code and Magic (LOCM) (Kowalski and
Miernik 2019) was used as testbed. LOCM is a game with
some similarities to the popular Hearthstone1. Some of the
more challenging features of the game are: 1) a variable
number of actions can be played in each turn, 2) some parts
of the game are unknown in the state, 3) the order in which
the cards are played is very relevant, and 4) the game has a
very large branching factor.

One challenging difference of LOCM with respect to
Hearthstone is that, in the former, the time budget to ob-
tain the next turn is just 200 ms in contrast to 60000 ms of a
typical Hearthstone game. In addition, in the LOCM game,
the board is divided into two lanes (left and right) instead of
just one as in Hearthstone. This adds an even higher branch-
ing factor since the agents have to deal with the problem of
having to decide in which part of the board each card should
be played. Figure 1 shows a screenshot of this game.

Summarizing, this paper presents three main novelties:

• We apply the N-Tuple Bandit Evolutionary algorithm to
adjust the parameters of the heuristic function used by an
evolutionary agent. As far as we know, this is the first pa-
per applying NTBEA for this purpose.

• This is the first research paper using the multi-action ad-
versarial game Legends of Code and Magic as a testbed.
This game has as principal challenging characteristics its
very low time budget to obtain player actions in a turn
(200ms) and a very large branch factor. In addition, this is
the first time that NTBEA is used in a game as challenging
as LOCM.

1https://playhearthstone.com



Figure 1: A screenshot of the Legend of Code and Magic
game during the battle phase (https://www.codingame.com).
The cards in the opponent player hand (top) are unknown
during the match.

• We assess the performance of the Online Evolution Plan-
ning algorithm, with the parameters of their heuristic
function tuned using NTBEA. As far as we know, this is
the first paper applying this type of evolutionary algorithm
to a strategy card game.

2 Definitions, Notation and Problem
Formulation

This section introduces the terminology and the notation that
will be used throughout this paper and formulates the prob-
lem to be solved. The notation follows the one exposed in
(Cowling, Powley, and Whitehouse 2012). More detail on
the game theory concepts can be found in standard textbooks
on this subject, e.g. (Myerson 1997).

A game is defined as a direct graph (S,Λ) where S are
the nodes and Λ the edges of the graph. The nodes S are
called states of the game. The leaf nodes are called terminal
states and the other nodes non-terminal states. In general, a
game has a positive number of k players. Some games also
have an environment player (player 0). Each state s is asso-
ciated with a number ρ(s) ∈ {0, . . . , k}, that represents the
player about to act. Each terminal state sT is associated with
a vector µ(sT ) ∈ Rk, which represents the reward vector. In
some games, the non-terminal states can also be associated
with an immediate reward vector that gives an idea of how
well the players are doing. A heuristic function λ(s) can be
used to estimate the reward vector µ(s), given the state (ter-
minal or not).

The game starts at time t = 0 in the initial state s0. At
time t = 0, 1, 2, . . . , if state st is non terminal, player ρ(st)
chooses an edge (st, st+1) ∈ Λ and the game transitions
though that edge to the state st+1. This continues until a
terminal state is reached at time t = T . Then, each player
receives a reward equal to their corresponding entry in the
vector µ(sT ) and the game ends. If the game allows imme-
diate rewards, players receive the immediate reward µ(st+1)
after reaching the state st+1.

Players typically do not choose edges directly, but choose
actions. In the simplest case, each outgoing edge of a state

s corresponds to an action that player ρ(s) can play. The set
of actions from a state s is denoted A(s). Note that, given a
state s, the player ρ(s) can play just one action (i.e. choose
an edge (st, st+1)) from the ones included in A(s).

The transition function Φ maps a (state, action) pair
(st, a) to a resulting state st+1 by choosing an edge
(st, st+1).

A policy for player i maps each state s with ρ(s) = i to
a probability distribution over A(s). This distribution spec-
ifies how likely the player i is to choose each action from
that state. One fundamental problem to be solved in adver-
sarial game AI is to find the policy that leads to the highest
expected reward, given that all other players are trying to do
the same.

The terms action and atomic action can be confused in
multi-action games. In this paper, we will refer to turn as
every edge outgoing a state (i.e. the actions) and to atomic
action to every element that can be part of a turn. The set
of all possible atomic actions given a state s is denoted
Γ(s) = {γ1, γ2, . . . , γqs}. The edges outgoing the state s,
are all the possible permutations of the elements of Γ(s)
which, depending on the number of elements, can be a very
large number. Therefore, there are as many different turns
that can be played from a state s, as possible permutations
in Γ(s). In most games, the number of atomic actions qs in-
cluded in the set Γ(s) depends on the state s.

We denote τ(s) = [γ1, γ2, . . . , γps ] as the list of ordered
atomic actions, included in Γ(s), that are played for player
ρ(s). Note that each atomic action can be played just once
in a turn and that not all atomic actions included in Γ(s)
must be played, i.e. ps <= qs,∀s. The number of elements
included in the list τ(s) can be different depending on the
game and the policy used.

The problem that the agents have to solve is, given a state
s, to find the list τ(s) that leads to the highest immediate
expected reward, i.e. to find the best subset of atomic actions
allowed from the state s and the appropriate order to play
them.

The heuristic function λ(s) is frequently defined as a lin-
ear combination of some features included in the state as
follows:

λ(s) =

F∑
f=1

ωf ∗ θf (1)

where F is the number of features of the state being taken
into account when estimating the reward vector. Therefore,
the problem to be solved in this paper is to find the correct
value of each weight ωf . In this paper, we proposed to use
NTBEA for this purpose.

In the LOCM game, there are only two players (k = 2)
and there is no environment player. The number of atomic
actions qs included in Γ(s) can vary along with the state.
Preliminary experiments have shown that this number can
vary from 1 to 35, with two peaks around 5 and 15 actions
as most common cases. These statistics have been calculated
after running 100 matches where the OEP agent (explained
in detail in Section 3.3) has played versus itself. Similar re-
sults can be obtained when using other agents. In addition,



there is no fixed number of atomic actions qs.

3 Related Work and Background
3.1 Related work on strategy card games
Most of the previous works on Strategy Card Game AI deal
with the Hearthstone game. Since the cards in the oppo-
nent’s deck should be unknown in this type of games, some
authors have developed methods to predict them. Dockhorn
et al. (Dockhorn et al. 2018) used the knowledge gathered
from a database of human replays to create a knowledge-
base of frequent player card combinations. Bursztein pre-
sented in (Bursztein 2016) a similar work where a bag-of-
words of card co-occurrence bi-gram was used for training
a prediction system for the next upcoming card.

Santos et al. (Santos, Santos, and Melo 2017) proposed a
modified version of the Monte Carlo Tree Search (MCTS)
algorithm which integrates expert knowledge in the algo-
rithms search process through a database of decks that the
algorithm uses to cope with the imperfect information and
through the inclusion of a heuristic that guides the MCTS
rollout phase. Zhang and Buro (Zhang and Buro 2017) im-
proved the effectiveness of MCTS by reducing search com-
plexity in the selection phase and by improving the rollout
phase, in which MCTS will sample action sequences accord-
ing to a rollout policy. Choe and Kim. (Choe and Kim 2019)
presented an MCTS-based approach to reduce the complex-
ity of the search space and decide on the best strategy. They
used state abstraction to present the search space as a Di-
rected Acyclic Graph (DAG) and introduced a variant of Up-
per Confidence Bound for Trees algorithm for the DAG. In
addition, they applied a sparse sampling algorithm to han-
dle imperfect information and randomness and reduce the
stochastic branching factor.

3.2 N-Tuple bandit evolutionary algorithm
The N-Tuple Bandit Evolutionary algorithm (NTBEA) (Lu-
cas, Liu, and Perez-Liebana 2018) combines multi-armed
bandits with an evolutionary algorithm to provide a sample-
efficient optimization algorithm. NTBEA was developed to
handle noisy optimization problems in a sample-efficient
way. The algorithm analyses the contribution of each indi-
vidual parameter value, together with combinations of pa-
rameter values. Each combination is referred to as an N-
Tuple. A modified form of the bandit equation is used to
balance exploiting apparently good parameter settings with
exploring those that have not yet been sampled much. NT-
BEA assumes that the execution time of querying the bandit
landscape model is negligible compared to evaluating a can-
didate solution on the target problem.

The algorithm starts sampling a single solution point uni-
formly at random in the search space. The fitness of this
solution is evaluated once, in the problem domain, using
the noisy evaluator. This solution is then stored in the ban-
dit fitness landscape model, together with its fitness value.
The model is then searched within the neighbourhood for a
new solution. The neighbourhood is defined using the num-
ber of neighbours and the proximity distribution to the cur-
rent solution, which is controlled by a mutation operator.

The neighbouring solution with the highest estimated Up-
per Confidence Bounds value (UCB) is then selected and
the process repeats until the evaluation budget is used up, or
some other termination condition is met.

For a problem with F parameters to be tuned, NTBEA is
typically configured using F 1-Tuple bandits, F∗(F−1)

2 2-
Tuples bandits and one F -Tuple macro-arm bandit.

A key part of the algorithm is the value function used to
sample in a large search space. The UCB value of any arm i
is defined as:

UCBa = Xa + C ∗
√

log n

na + ε
(2)

where Xa is the mean reward for playing arm a. This is the
exploitation term. The right-hand term controls the explo-
ration, where n is the total number of times this bandit has
been played, and na is the number of times the arm a has
been played. The term C is called the exploration factor:
higher values of C lead to exploratory search, low values
lead to a more greedy or exploitative search. The ε value is
used to control whether each arm should be pulled at least
once. In the standard UCB formula, ε is set to zero ensuring
that each arm is pulled once in turn, but for NTBEA pur-
poses, this would be impractical, as the macro-arm consist-
ing of the entire N-Tuple would force an exhaustive explo-
ration of the search space.

The UCB aggregate value for all arms used, given a solu-
tion x is defined as follows:

UCB(x) =

∑m
j=1 UCBNj(x)

m
(3)

where m is the total number of bandits used and N is the N-
Tuple indexing function such that Nj(x) indexes the j − th
bandit for search space point x.

3.3 Online evolutionary planning
Online Evolutionary Planning (OEP) (Justesen, Mahlmann,
and Togelius 2016) is an evolutionary approach that can be
applied to multi-action adversarial games. It optimises the
action sequence of the current turn, without looking ahead
to future turns of the player or the opponent. OEP begins
its search by creating an initial population of genomes. Each
genome represents a complete turn, a fixed-length sequence
of atomic actions. These atomic actions can be sampled ran-
domly, or another initialisation strategy can be used. The
population is then improved from generation to generation
until computation time runs out or the allowed budget is de-
pleted.

The crossover step of the evolutionary algorithm used can
lead to an illegal action in some of the created offspring.
A repair strategy is needed, for instance by picking random
legal actions or using a greedy approach (Baier and Cowl-
ing 2018). A proportion of the offspring undergoes mutation.
One randomly chosen action of the sequence is changed to
another action randomly chosen from all legal actions. If
this leads to illegal actions later in the sequence, they are
replaced using the repair strategy as well.



Figure 2: An example of the OEP algorithm in a turn with 5
possible atomic actions: A, B, C, D and E. In this example,
a 1+1 evolutionary algorithm is used.

When the time budget is exhausted, OEP returns the ac-
tion sequence represented by the current best genome, so it
can be executed, one atomic action at a time. It can, there-
fore, be seen as doing one iteration of rolling horizon evo-
lutionary algorithm (RHEA) (Perez Liebana et al. 2013) at
the beginning of each turn, and with a search horizon of one
turn. Figure 2 shows an example of the OEP operation where
Γ(S) = {A,B,C,D,E}.

4 Methods
4.1 Legend of code and magic
Legends of Code and Magic (LOCM) (Kowalski and
Miernik 2019) is an implementation of a multi-action adver-
sarial Strategy Card Game, designed to perform AI research.
Its advantage over real card game AI engines is that it is
much simpler to handle by the agents, and thus allows test-
ing more sophisticated algorithms and quickly implement-
ing theoretical ideas. The most similar commercial game is
Hearthstone. One important difference is that the time bud-
get in LOCM is just 200 ms in contrast to 60000 ms used in
Hearthstone. Therefore, some algorithms frequently used in
Hearthstone, such as MCTS, do not perform as well here.

LOCM is based on the fair arena mode, i.e., before every
game, both players create their decks secretly from symmet-
rical yet limited choices. Because of that, the deck building
phase cannot be simply reduced to using human-created top-
meta decks as in Hearthstone. All cards effects are determin-
istic. The non-determinism is introduced by the ordering of
cards in the decks.

The game has two phases. First, in the draft phase, for
30 turns, both players are given a choice between 3 differ-
ent cards. Players select the card they want to add to their
deck. Both players can select the same card. Players do not
know which cards have been selected by the opponent. Once
the draft phase is over, both decks (consisting of 30 cards
each) are shuffled. The second phase is the battle, where
each player plays cards from their hand on the two lanes,
on their side of the board. Each player starts with 30 health
points (HP). To reduce the health points of an opponent, the
player must make use of cards to deal damage. The game is
over once any player reaches 0 or less HP.

There are two different types of cards: Creatures and
Items. Placing a Creature (similar to minions in Hearth-
stone) on the board is called summoning. A player summons
Creatures to their side of the board by paying their cost in
mana. They are used to attack the opponent and also serve
as a defence against the Creatures of the opposing player.

When a Creature attacks the opponent directly (and not their
cards), it reduces the HP of the opponent according to its
attack strength. When a Creature attacks another Creature,
they both deal damage equal to their attack strength to the
defence of the other creature. Creatures are removed from
play when their defence reaches 0 or less. Creatures can
have different abilities. One of the most important ones is
Guard, which enforces that enemy creatures from the same
lane must attack creatures with Guard first.

The other type of card is Items (similar to spells in
Hearthstone). When played, Items have an immediate and
permanent effect on the board or the players. There are three
types of Items: 1) green Items must target the active player’s
creatures and hurt them. 2) red Items must target the oppo-
nent’s creatures and have a negative effect on them. 3) blue
Items can be played to give the active player a positive effect
or cause damage to the opponent, depending on the card.

Mana is necessary to play cards from the hand. Each turn,
the number of mana units that each player can use increases.
Each player can spend as much mana units per turn as they
have. For instance, if the player starts the turn with 6 mana
units, it is possible to summon two cards with cost 3 each,
or summon only one with 6 mana cost. The cost of the cards
varies from 0 to 12.

To run a turn the agent must provide to the environment
a list of atomic actions. The complete rules of the game can
be found in (Kowalski and Miernik 2019).

Valid and possible atomic actions As shown in Figure 1,
the valid atomic actions that can be played in the actual state
of the game are as follows (yellow numbers in the top-right
corner of each card show their ID): {Summon 1 L; Summon
1 R; Summon 3 L; Summon 3 R; Use 2 6; Use 2 7; Use 4 6;
Use 4 7; Use 5 8; Use 5 9; Attack 6 9, Attack 7 -1}. Note that
card 6 cannot attack either to opponent card 8 or directly to
the opponent since opponent card 9 has the Guard property.

But, if the agent decides to play first the atomic action
Use 5 9, then two new atomic actions can be played for card
6 since now the opponent card 9 will no longer be on the
board and no other card with the Guard ability remains on
the board. These two new possible atomic actions are: Attack
6 8 and Attack 6 -1.

To give to the agents the opportunity to discover this kind
of interesting behaviours, all the possible atomic action that
can be played (taking into account any possible order of
playing the atomic actions) and not only the valid ones,
should be included in the set Γ[s].

4.2 Agents
All the agents tested in this paper, start from the list of
all possible actions that can be played in a state s (i.e. the
list Γ(s)) and attempt to find an optimal turn τ(s). In all
cases, before playing an atomic action, the agent checks if
the atomic action is a valid one. If not, this atomic action is
ignored and the agent tries to play the next one in the list
τ(s).

Random agent The random agent just shuffles the initial
list of atomic actions Γ(s). They are then played in the re-
sulting order. The heuristic function is not used.



NoAI agent This agent directly plays the list of initial
atomic actions in the original order. This order follows a
simple strategy which aims to directly attack the opponent
whenever possible. Similarly to the Random agent, NoAI
does not use the heuristic function.

OEP-based agent The original version of the OEP al-
gorithm has to select 5 atomic actions (in the game
HeroAIcademy qs = 5,∀s) to be played from the set of all
valid actions that can be played. Therefore, the genome is a
list of five atomic actions. In our case, the genome is the list
of all possible (not only valid) atomic actions (i.e. Γ(s)) that
can be played given the state of the game. The agent plays
the atomic actions following the order in the list Γ(s). If an
action is not valid, given the current state of the game, it is
ignored and play continues with the next one.

Mutation consists of changing the order of the atomic ac-
tions on the list. This allow to discover interesting sequence
of actions that can maximise the immediate rewards.

Since the time budget of LOCM is very small (200ms),
a simple 1+1 evolutionary algorithm has been used. There-
fore, no crossover step is needed. In cases where the time
budget is higher, a more sophisticated evolutionary algo-
rithm could be used.

4.3 Heuristic function design
The heuristic function λ(s) has been designed as a linear
combination of several features, balanced by a set of weights
(see Equation 1). Five different features are proposed:

• θ1: The objective of the game is to reduce the health points
of the opponent to zero. This feature is the difference be-
tween the opponent health points after playing the turn
(i.e. at state st+1), and their initial health points (i.e. at
state st). A larger value means that the agent is reducing
more health points from the opponent.

• θ2: Agents have to also pay attention to the opponent
cards on the board, since, in the next turn, they can be used
to attack the player. Therefore, it is very important to bal-
ance the attacks between the opponent cards and the op-
ponent directly. This feature is the possible loss of health
points if the opponent decides to directly attack the player
using all its cards. In this case, small values are preferable.

• θ3: This feature is used to help the agent to decide which
card should be played, as not all the cards are equally use-
ful in each turn. The feature sums the values of all cards
on the player’s board. The better the cards on the board,
the higher the value.

• θ4: Sometimes it is better not to play some items, in order
to allow them to be used in the future. This feature is the
sum of the values of all Item cards in the player’s hand.
The better Item cards in the hand, the higher the value.

• θ5: Some cards increase the number of cards that are go-
ing to be drawn in the next player turn. This feature is the
number of cards that will be drawn in the next player turn.

In this paper, we propose to use NTBEA to adjust the
weights [ω1, . . . , ω5]. The noisy evaluator needed for NT-
BEA consists of playing several games between the OEP

agent using the tuned heuristic function and the NoAI agent.
The fitness of a set of weights is determined by the win rate
of the OEP agent in the evaluation games played. Several
plays are needed since the results of a game between two
agents strongly depend on the decks used.

4.4 The deck problem
The outcome of the agents strongly depends on the deck
used and on the order of the cards. To deal with this prob-
lem, and therefore to allow a fair comparison of the agents,
several decks have been built in advance.

The draft step of the game has been run 10 times. Each
time, 3 different strategies have been used to select one of the
3 cards proposed by the system. The first strategy (employed
by the winner in the CEC19 LOCM competition) selects the
card with the best score based on a hand-designed estimation
of the value of each card. The second strategy (employed by
the runner up in the CEC19 competition) tries to obtain a
certain number of cards with low mana cost (useful for the
beginning of the game), and a certain amount of moderate
and high cost (useful for the middle and last turns of the
game). The third strategy is a combination of both ideas:
when the system provides 3 cards falling in the same mana
cost group, the best according to the first strategy is selected.
Once the 3 decks have been obtained, they are shuffled 10
times, producing 10 different orders to play each deck.

In total, a database of 3∗10∗10 = 300 different decks was
obtained. The battle phase of the game was then modified to
replace the draft phase with direct use of the pre-built decks.

5 Experiments and Results
5.1 Experimental set up
In this paper, we use terminology adopted from tennis to
compare the performance of the agents. A game is a play
between two agents using a particular deck and a particular
order. The result of a game is 1 if the first player is the winner
or 0 if the second player wins.

A set is a collection of 12 games between two agents. In
a set, 3 decks Dd,o

1 , Dd,o
2 and Dd,o

3 are used (where d and o
stand for the d−th draft used to generate the 3 decks and the
o − th order) to produce a fair comparison between agents,
since all possible combination of games using the 3 decks
are taken into account. Additionally, each agent plays half
the games as first player, and half as the second player.

Finally, a match is to play several sets varying the draft (d)
from where the 3 decks and their order (o) are selected. In
total, a match consists of 100 sets, or 1200 games between
two agents. The result of a match is the mean win rate per
deck for the first agent.

NTBEA was used to tune the weights of the heuristic
function (i.e. [ω1, . . . , ω5]). For all features, less φ2, six
different values were tested: [0, 1, 2, 3, 4, 5]. In the case
of the feature φ2 the following values were used instead:
[−5,−4,−3,−2,−1, 0]. 100 neighbours and a mutation
probability of 10% were used.

For the noisy evaluator, a set was played using the OEP
agent, with the solution being the current one in NTBEA, ver-
sus the NoAI agent. Each time the noisy evaluator was used,



Table 1: Win rate mean and standard deviation (for all decks)
of matches between two agents. µ and σ stand for mean and
standard deviation, respectively.

1st agent 2nd Agent µ σ
OEP([1,1,0,0,0]) OEP([1,0,0,0,0]) 0.68 0.12
OEP([1,0,1,0,0]) OEP([1,0,0,0,0]) 0.81 0.11
OEP([1,0,0,1,0]) OEP([1,0,0,0,0]) 0.55 0.12
OEP([1,0,0,0,1]) OEP([1,0,0,0,0]) 0.50 0.11

d and o were randomly obtained, so as to prevent overfit-
ting the result to a particular deck. Note that a brute force
algorithm needs to play 65 ∗ 1200 ≈ 0.9 ∗ 107 games to
explore the complete search space. The use of NTBEA can
drastically reduce the number of times that a game is played.

The number of calls to the heuristic function was used as a
time budget for the agents, therefore, the agents performance
is independent of the speed of the computer used to run the
experiments. All the experiments reported in this paper limit
the agent budget to 500 calls.

As an average, the OEP agent needed 54.98 ms (with σ =
19.74) to complete the budget. The experiments were run in
a Dell XPS 15 9570 computer with an Intel(R) Core(TM)
I9-8590HK CPU @ 2.9GHz processor and 32MB of RAM.

5.2 Preliminary experiments
The main objective of the game is to reduce the health points
of the opponent to 0. As a first experiment, we conducted a
match between the agents OEP(1s) and OEP([1,0,0,0,0]).
The first is an agent with the same weights for all features
(i.e. ωf = 1,∀f ). The second agent has all weights set to
zero less the first one, i.e. an agent that only take into account
the reduction of opponent health points (feature θ1).

The results obtained show the first agent winning 85.6%
of the games. Thus we can conclude that only taking into ac-
count θ1 does not produce the best results and a combination
of all features is suggested to work better.

Table 1 shows the results of several matches where the
first agent is OEP taking into account various combinations
of two features, versus the OEP(1s) agent. This aims to study
how important the features θ2, θ3, θ4, θ5 are.

The results obtained suggest that feature θ3 (related to the
value of the cards on the board) has a strong relevance. Fur-
thermore, θ2 (related to the opponent damage threat), seems
to also be important. However, features θ4 and θ5 appear to
have less influence.

5.3 NTBEA evolution and recommend solution
Figure 3 shows the evolution of the parameters tuned by NT-
BEA. Every 100 iterations the recommended solution given
the actual state of the NTBEA process has been estimated. At
the beginning of the process, the parameters vary a lot, since
NTBEA had not had enough time to find a good solution in
a so noisy scenario as LOCM. Around 5000 iterations, the
algorithm converges for all parameters.

The final solution recommended by NTBEA is
[3, 2, 5, 1, 1]. In the recommended solution, all features
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Figure 3: Evolution of the parameters when using NTBEA.
From top to bottom, the figures show the evolution of the 5
parameters (starting with θ1). The x-axis is the number of
iterations. The y-axis shows the parameter value.

Table 2: Win rate mean and standard deviation (for all decks)
of matches between two agents. µ and σ stand for mean and
standard deviation, respectively.

1st agent 2nd Agent µ σ
NoAI Random 0.767 0.057

OEP(1s) Random 0.901 0.039
OEP(NTBEA) Random 0.933 0.036

OEP(1s) NoAI 0.803 0.057
OEP(NTBEA) NoAI 0.825 0.058

OEP(1s) EMCTS 0.505 0.022
OEP(NTBEA) EMCTS 0.560 0.021

are considered important (none were set to 0) with θ3 and
θ1 being given most importance.

According to the results obtained, it is not only important
to reduce the health of the opponent (θ1) as the NoAI agent
tries to do. To have good cards on the board is the most im-
portant feature (θ3) and it is also relevant to take into account
the amount of damage that the opponent can produce in the
next turn (θ2). The solution obtained using NTBEA agrees
with the results obtained in Section 5.2.

5.4 OEP Agent performance
In this section, several matches have been tested to study
the performance of the OEP agent when using the heuristic
function tuned by NTBEA (we call this agent OEP(NTBEA))
versus some baselines.

We first test the performance of the NoAI, OEP(1s) and
OEP(NTBEA) agents versus Random. Figure 4 shows the
result obtained for each deck. First three rows of Table 2
show the mean (and standard deviation) across all decks.

Results shows that NoAI can win a lot of games against
Random (76.7%) since it uses a sensible strategy. Using all
the cards on the board to directly attack the opponent is a
successfully and aggressive strategy that requires the op-
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Figure 4: Mean win rate for each deck for matches played
by NoAI, OEP(1s) and OEP(NTBEA) versus Random.
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Figure 5: Mean win rate for each deck for matches played
by OEP(1s) and OEP(NTBEA) against NoAI.

ponent player to develop an appropriate defence. Results
also show that OEP(1s) clearly outperforms NoAI winning
the 90% of the games. Finally, OEP(NTBEA) obtains even
better results than OEP(1s), suggesting that the combina-
tion found by NTBEA improves the performance of OEP.
OEP(NTBEA) has better win rate for all decks less one.

For a second experiment, we test OEP(1s) and
OEP(NTBEA) agents versus NoAI. Figure 5 and the fourth
and fifth rows of Table 2 show the results of those matches.
OEP(NTBEA) outperforms the original algorithm with al-
most all decks, with a better mean win rate.

The last experiment aims to study whether the tuned
heuristic is also useful when playing against a different
agent to the one used during training. For this purpose, both
OEP(1s) and OEP(NTBEA) agents played a match against
an agent that uses the Evolutionary Monte Carlo Tree Search
algorithm (EMCTS) (Baier and Cowling 2018).

EMCTS combines some of the ideas of tree search from
MCTS with the genome-based approach of evolutionary al-
gorithms. EMCTS starts from a complete sequence of atomic
actions, just like the genomes of OEP. EMCTS grows a tree
by mutating the current sequence, using the same mutation
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Figure 6: Mean win rate for each deck for matches played
by OEP(1s) and (NTBEA) against EMCTS.

operator as OEP. EMCTS does not use rollouts to complete
the game, it simply evaluates the sequences at the leaf nodes.
The backpropagation step is unchanged from MCTS. When
the time budget is exhausted, the tree is traversed until a node
without descendants is found. The best sequence of atomic
actions in the path is the one returned by the algorithm, to be
played by the agent. We have used the same heuristic func-
tion design as in the OEP algorithm and all the weights have
been set to 1.

Figure 6 and last two rows of Table 2 show the results
obtained. They show that the training of OEP(NTBEA) was
robust enough to also obtain better results for almost all
decks against the different opponent. As Figure 6 and Table
2 show, OEP(1s) has a very similar performance to EMCTS,
winning close to 50% of matches, i.e. none of the two agents
clearly outperforms the other one. However, when using the
weights tuned by NTBEA, the win rate increases such that
the OEP-based agent is preferable in almost all decks.

6 Conclusions
This paper presented the use of the N-Tuple Bandit Evolu-
tionary Algorithm (NTBEA) to optimise the parameters of
the heuristic function. The challenging strategic card game
Legends of Code and Magic was used to test the proposed
approach. The results obtained demonstrate that NTBEA can
effectively tune the heuristic function weights to improve
the performance of the evolutionary algorithm used, Online
Evolutionary Planning (OEP), even when playing against
opponents different to those used during training.

Future work must be focused on studying whether the pa-
rameters obtained with NTBEA can be applied when other
decks are used. In addition, some other N-tuple configura-
tions could also be studied.
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