
Efficient Evolutionary Methods for Game Agent Optimisation:
Model-Based is Best

Simon M Lucas1, Jialin Liu2, Ivan Bravi1, Raluca D. Gaina1,
John Woodward1, Vanessa Volz1, Diego Perez-Liebana1

1Queen Mary University of London, London, UK
2Southern University of Science and Technology, Shenzhen, China

simon.lucas@qmul.ac.uk, liujl@sustc.edu.cn, i.bravi@qmul.ac.uk, r.d.gaina@qmul.ac.uk,
j.woodward@qmul.ac.uk, v.volz@qmul.ac.uk and diego.perez@qmul.ac.uk

Abstract

This paper introduces a simple and fast variant of Planet Wars
as a test-bed for statistical planning based Game AI agents,
and for noisy hyper-parameter optimisation. Planet Wars is a
real-time strategy game with simple rules but complex game-
play. The variant introduced in this paper is designed for
speed to enable efficient experimentation, and also for a fixed
action space to enable practical inter-operability with Gen-
eral Video Game AI agents. If we treat the game as a win-loss
game (which is standard), then this leads to challenging noisy
optimisation problems both in tuning agents to play the game,
and in tuning game parameters.
Here we focus on the problem of tuning an agent, and re-
port results using the recently developed N-Tuple Bandit
Evolutionary Algorithm and a number of other optimisers,
including Sequential Model-based Algorithm Configuration
(SMAC). Results indicate that the N-Tuple Bandit Evolution-
ary Algorithm offers competitive performance as well as in-
sight into the effects of combinations of parameter choices.

1 Introduction
Games provide a rich and natural source of noisy optimisa-
tion problems. Uncertainty arises in many ways in the de-
sign, testing and application of game-playing agents, and in
the design optimisation of games to meet desired criteria.
Some games are inherently stochastic due the roll of dice,
shuffle of cards or random number generation, but other
sources of uncertainty include the unpredictable actions of
an opponent, the use of inherently stochastic agents, and the
results of human play-testing of games.

Regardless of the purpose of the optimisation, there is a
natural desire to make the optimisation as efficient as pos-
sible. This efficiency enables agents and game parameters
to be optimised rapidly, allowing the use of such optimisers
to be more widespread. Extremely rapid optimisation could
even spur the development of new game design tools, where
a designer could be given immediate advice on the likely
effects of changes to the game design, as the optimiser ex-
plores the most interesting choice of game parameters.

It is widely known in machine learning and algorithm op-
timisation that using a good choice of parameters can im-
prove performance by an order of magnitude or more, com-

AAAI-2019 Workshop on Games and Simulations for Artificial In-
telligence.

pared to a poor choice. On the game design side, well cho-
sen parameters can be the difference between an excellent
game and an unplayable one. Within the game AI commu-
nity, evolutionary algorithms are a very common choice of
optimisation method (Yannakakis and Togelius 2018). How-
ever, there are often significant advantages in using a more
sophisticated model-based evolutionary approach, and we
provide an example of this below.

We designed and implemented a simplified version of
Planet Wars, which is itself a relatively simple (relative to
a game like StarCraft for example) but interesting real-time
strategy game. Although Planet Wars has been used as the
basis for a very successful Google AI challenge, the software
behind that is complex and not fast enough for the practical
application of statistical forward planning algorithms such
as Monte Carlo Tree Search and Rolling Horizon Evolution.
To enable the use of these algorithms and also allow rapid
experimentation we designed and implemented a simplified
version of the game. This cut-down version provides a good
benchmark for game AI agents in that it has sufficient skill-
depth to expose a wide span of player abilities, but runs very
quickly, at more than 10 million game ticks per second. Ev-
idence of skill-depth will be presented in Section 5.

The version described in this paper is as simple as we
could make it while retaining some of the essence of the
game. A fast and full-featured re-implementation of Planet
Wars that adds gravity and a variety of actuators is described
by Lucas (Lucas 2018), though that version is an order of
magnitude slower than the version described here. In this pa-
per we focus on optimising game-playing agents, and leave
optimising the game parameters to meet specified design cri-
teria for future work.

Another motivation behind this work is to provide an ad-
ditional set of games for the General Video Game AI (GV-
GAI) competition framework. While most GVGAI games to
date have been implemented in the Video Game Description
Language (VGDL), there are advantages to writing games
in a language such as Java, as done for this paper, as noted
in (Perez-Liebana et al. 2018). Java provides more flexibil-
ity in designing game rules that would be difficult to ex-
press in VGDL, and also enables much faster execution of
the game. In addition to the implementation of the game, we
also provide a wrapper class so that GVGAI agents see the
standard GVGAI interface, and can play the game without



any modification. The Planet Wars variant developed here is
suitable for either the single player or two player planning
tracks, and has already been tested with the GVGAI frame-
work. With some interface wrapping it could also be used for
the GVGAI learning tracks. The development of games with
strategic depth for GVGAI and for Atari Learning Environ-
ment (ALE) agents will provide a fresh range of challenges
for general video game playing.

Having set up the game with an agent configuration prob-
lem as a noisy optimisation problem, the main contributions
of the paper are to show the effectiveness of model-based
optimisation approaches compared to non model-based evo-
lution, and also to provide insight in to how the N-Tuple
Bandit Evolutionary Algorithm (NTBEA) operates.

The rest of the paper is structured as follows. Section 2
presents the algorithms considered in this work for optimiz-
ing the hyper-parameters. Section 3 describes variations of
the Planet Wars game. Section 4 describes the test problem.
Section 5 presents the experimental results and discusses the
results. Section 6 concludes.

2 Hyper-Parameter Optimisation
In this section we describe the main approaches to handling
hyper-parameter optimisation, specifically for noisy applica-
tions.

2.1 Main Approaches
The performance of an algorithm may be highly dependent
on its parameter settings, which is why hyper-parameter op-
timisation, i.e. finding optimal parameter configurations for
optimisation algorithms, is a popular topic of research. In
hyper-parameter optimisation, especially in context of real-
world problems with already expensive fitness functions,
the evaluation of a single parameter configuration is usually
computationally expensive. For this reason, hyper-parameter
optimisation algorithms often use model-based approaches
(Hutter, Hoos, and Leyton-Brown 2011; Bartz-Beielstein
2006). These algorithms train surrogate models on evalu-
ated solutions and use the obtained information to reduce
the number of evaluations required in order to avoid pro-
hibitively long algorithm runtimes. Several methods to inte-
grate the information have been proposed (Jin 2011).

The existence of noise adds another dimension to hyper-
parameter optimisation, as it significantly affects the perfor-
mance of an optimisation algorithm and may require special
coping measures to be taken, such as selective resampling as
done by the N-Tuple Bandit Evolutionary Algorithm.

2.2 N-Tuple Bandit Evolutionary Algorithm
The N-Tuple Bandit Evolutionary Algorithm (NTBEA) was
formalised by Lucas et al. (Lucas, Liu, and Perez-Liebana
2018) in 2018, though an earlier version has been used for
evolving game parameter settings (Kunanusont et al. 2017).
The NTBEA combines evolution with bandit-based sam-
pling and follows on from the bandit-based Random Muta-
tion Hill Climber proposed previously (Liu, Perez-Liebana,
and Lucas 2017). The NTBEA was designed for hyper-
parameter optimization, and has been tested on evolving new

game instances by optimizing game parameter settings (Ku-
nanusont et al. 2017), on off-line optimization of parame-
ter settings for game-playing AI agents on different video
games (Lucas, Liu, and Perez-Liebana 2018) and on on-line
learning of parameter settings for an MCTS agent on games
in the General Video Game AI (GVGAI) framework (Sironi
et al. 2018).

For noisy game optimisation problems the NTBEA has a
number of attractive features:

• Rapid convergence to good solutions in cases of high
noise and small evaluation budgets

• Informative and intuitive model provides statistics to ex-
plain parameter choices

• Low computation overhead compared to Gaussian Pro-
cesses models, for example

• Computation overhead scales well for large search spaces
and large evaluation budgets due to efficient constant-time
data structures, namely arrays or hash-maps

• The algorithm is relatively simple, making it easy to port
to and embed in new platforms

Currently there exist open source implementations of the
NTBEA in Java1 and in Python2.

2.3 Sequential Model-based Algorithm
Configuration

For comparison, we consider one of the most popular hyper-
parameter optimization algorithms, Sequential Model-based
Algorithm Configuration (SMAC), proposed by Hutter et
al. (Hutter, Hoos, and Leyton-Brown 2011).

SMAC is a model-based algorithm configuration tool
and is an extension of Sequential Model-Based Optimiza-
tion (SMBO). The algorithm alternates between construct-
ing predictive models and utilising them to determine which
parameter configurations to choose next. This approach is
described by the authors as a balance between intensification
and diversification (similar to exploitation and exploration).
We use the SMAC version 3 developed by the ML4AAD
Group of the University of Freiburg3 using Python and C++.

3 Planet Wars
3.1 Google AI Challenge and Dagstuhl AI

Hackathon
Planet Wars was the subject of the Google AI challenge in
2010 by the University of Waterloo in Canada (Fernández-
Ares et al. 2011). The game is a simple real-time strategy
game that is fun for humans to play and provides an inter-
esting challenge for AI.

According to Buro et al. (section 4.1 in (Lucas et al.
2015)), who used Planet Wars in a hackathon, the game ben-
efits from a simple rule set and a real-time decision complex-
ity. They also observed that the particular implementation

1https://github.com/SimonLucas/ntbea
2https://github.com/Bam4d/NTBEA
3SMAC on GitHub: https://github.com/automl/

SMAC3.



was rather slow and only able to play of the order of one
game per second, which made optimising the AI players a
time-consuming process.

3.2 Fast Planet Wars Variants
The approach we took to developing variants of Planet Wars
was to strip it back to the bare minimum of essential features
which would still allow the game to be recognisable as a
planet invasion game. We began with the following aims:

• The game should be fast, allowing rapid copying of the
game state, and even more rapid advancing of the game
state given a set of selected actions (i.e. the nextState
function). We aim to run the game at more than one-
million ticks per second on a typical modern laptop. This
makes it suitable for testing statistical forward planning
algorithms.

• Make the game easily scalable to a large number of plan-
ets, without changing the structure of the agents or mak-
ing the game too slow. Ideally the computational cost of
the next-state function should be independent of the num-
ber of planets, or at worst be linear in the number of plan-
ets.

• Ensure the game has significant skill-depth (this can be es-
timated by the span of Elo ratings (or more simply, league
table scores), between strong and weak agents).

• Make the code simple and easily extensible to encourage
others to copy and adapt.

• Retain the simultaneous real-time aspect of the game.

• Make the game playable with a small fixed-size action
space, suitable for General Video Game AI agents, or
Atari Learning Environment (ALE) agents.

A screen shot of our simplified Planet WarsGame is
shown in Figure 1, and was first described by Lucas et
al. (Lucas, Liu, and Perez-Liebana 2018). The game well
exceeds our target speed and runs at more than 10 million
game ticks per second.

We first reiterate the main features of the game from (Lu-
cas, Liu, and Perez-Liebana 2018) before describing some
aspects in more detail:

• There are no neutral planets: the ships on each planet are
either owned by player 1 or player 2.

• At each game tick, a player moves by shifting ships to or
from a player’s ship buffer, or by moving its current planet
of focus.

• When a player transfers ships it is always between its
buffer and the current planet of focus.

• At each game tick the score for each player is the sum of
all the ships on each planet it owns, plus the ships stored
in its buffer. We have two versions of the game: the easi-
est for the planning agents, and the one used for most of
the experiments in this paper, also adds in the ships in a
player’s buffer to its score, a more deceptive version of
the game does not include this.

Our intuition is that two of the elements missing from the
cut-down version will most likely significantly reduce the
skill-depth: these are the time-delay between the ships leav-
ing their origin and arriving at their destination, and the neu-
tral planets. Neutral planets pose an interesting dilemma for
a player: invading them wastes a player’s ships, unlike in-
vading the opponents planets where the ships lost directly
deplete the opponent’s total. But invading neutral planets is
also necessary in order to grow a player’s ship producing ca-
pacity. Therefore a common ploy is to wait for the opponent
to invade a neutral planet, then issue an immediate strike on
it. Hence, it will be interesting future work to compare the
skill-depth of the version described in this paper with the
version described in (Lucas 2018).

3.3 Game Play
At each game step a player executes one of 5 actions. Do
nothing, move planet of focus (clockwise or anti-clockwise),
or attempt to move planets from buffer to planet of focus, or
vice versa.

To make the agent evaluation process as efficient as pos-
sible the game used in all our experiments was played for a
fixed budget of 200 game ticks, as most games were already
decided by this point. The objective of each player is to have
the higher score when the game ends, which is calculated
as the sum of all the ships on each of their planets plus the
ships stored in their buffer.

In addition to the agent interface, the game is also
playable via the arrow-keys on a keyboard. The lead author
has played many games against the best evolved agents in
this study using the best configurations specified below, and
is rarely able to beat them when playing at one second per
move. However, the circular layout of the planets is confus-
ing for left/right key control (just as playing Atari’s Tempest
using a keyboard is confusing).

4 Optimising Rolling Horizon Evolutionary
Planning Agents

We compared the NTBEA and SMAC (presented in Section
2), as well as several non-model based evolutionary algo-
rithms, on optimizing hyper-parameters of a game playing
agent on the Fast Planet Wars game.

4.1 Agents
In this work, we optimise the parameters of a rolling horizon
(1 + 1)-Evolutionary Algorithm, denoted as RHEA in the
rest of the paper. In the RHEA agent, the individual is an ac-
tion sequence of a fixed horizon. The algorithm is initialised
by creating a population of random actions sequences or
rollouts by sampling uniform randomly from the available
set of actions. The choice of evolutionary algorithm opti-
miser is one of the parameters of the RHEA agent. For all
these experiments we used a random mutation hill climber,
also known as a (1 + 1) EA. In this case the algorithm is
initialised with a single random rollout.

The key parameters to be optimised for this agent and
their legal values are summarised in Table 1. The notations
are detailed as follows:



Figure 1: A simplified version of planet wars made for
speed. This is a competitive two player game played by
the green player versus the red player. In this version there
are no neutral planets, the initial state randomized regarding
planet ownership and size. All transfers between planets go
via a player’s respective buffer in the middle of the area, and
are transferred between the buffer and the planet of focus,
identified by the green diamond and the red square. The aim
for each player is to acquire the most ships within a specified
time limit or to win the game by occupying all the planets.

Table 1: Search space of the parameter settings.

Variable Type Legal values
nbMutatedPoints Integer 0.0, 1.0, 2.0, 3.0
flipAtLeastOneBit boolean false, true
useShiftBuffer boolean false, true
nbResamples Integer 1, 2, 3
sequenceLength Integer 5, 10, 15, 20, 25, 30

• nbMutatedPoints defines the mutation probability, how
likely a mutation occurs at every dimension, by dividing
it by the number of dimensions (in this case the number
of dimensions is the same as the sequence length)

• flipAtLeastOneBit indicates if at least one mutation
should occur at each time;

• useShiftBuffer enabled or not: if disabled, at any time
step t+ 1, the initial individual is reset to random, other-
wise, the individual at time step t shifts its action sequence
forward and fills the last position by a random action;

• nbResamples defines how many time the individual
(i.e. the action sequence) is re-evaluated as the game is
stochastic;

• sequenceLength defines the planning horizon (i.e. the
length of each action sequence / rollout).

As Planet Wars is a two-player game without win or loss,
only the game scores for both players are reported at the end
of a game. We define the following evaluation function for
the agent, assuming optimizing for player 1:

f(player1, player2) =

{
1, if score1 > score2
−1, otherwise

(1)

Figure 2: The graph provides insight into a rolling hori-
zon evolutionary algorithm playing Planet Wars. The RHEA
agent has a rollout length (horizon) of 20, and this variant of
the game includes the ships on their buffer in each agent’s
score.

Figure 3: This graph is similar to the one in figure 2 except
that the game score does not include the ships in each buffer,
meaning that agents need to see beyond the apparent loss in
score that moving ships to their buffer would entail. This
causes short-term agents to perform very badly compared to
the previous version of the game.

where score1 and score2 denotes the final scores obtained
by player1 and player2. The RHEA agent aims at maximis-
ing the game score from the perspective of its player. Since
the player with the largest number of ships wins, this is a
sensible objective to optimise.

To give an idea of what each agent sees during its roll-
outs, we plot the score difference from the current game
state to 20 game ticks ahead for a typical game-state. Fig-
ure 2 shows the results of the rollouts when we include the
ships in the buffers in each player’s score. To give an idea of
how simple changes to the game can affect an agent’s view
of the world, Figure 3 shows how the score typically varies
when the buffers are not included in the score. Note that this
simple change makes the game noisier and more deceptive,
and harder for the short-term agent to play. Figure 4 shows
the game score traces when playing these two agents against
each other for these two game variants. Not including the



Figure 4: The figure shows a medium-term planning agent
(200 rollouts of length 10) playing 100 games against a short
term agent (400 rollouts of length 5). The number of roll-
outs per game state is adjusted to keep the tick-budget per
action constant at 2, 000. Each line shows how the score de-
veloped over each game tick. Left: Buffers are included in
the score, Right: Buffers not included. With the buffer, we
observe the short-term agent being convincingly beaten, but
still winning 16 games. Without the buffer, the short-term
agent lost all 100 games. This illustrates how small changes
to the game can have significant effects on the agents that
play it.

buffered ships in the score has a significant effect both on
the game outcomes (the short-term agent now loses all 100
games) and the smoothness of the score trajectories.

5 Results and discussion
In this section we describe the experimental settings fol-
lowed by a more detailed analysis of the optimisation prob-
lem. The comparison with other evolutionary algorithms is
presented in Section 5.4.

5.1 Experimental settings
The game is played by a RHEA with settings selected by an
optimizer versus a RHEA agent with manual tuned parame-
ter setting (1, true, true, 1, 5) without knowledge about the
fitness landscape denoted as Afixed. At every game tick,
each of the agents has 2, 000 forward model calls as its sim-
ulation budget. The fitness value reported for a solution is
f(Atuned, Afixed) with f defined in (1).

The opponent model used by each agent was fixed for all
the hyper-parameter optimisation experiments reported be-
low. In order to identify the baseline performance, we used
an agent that does not act at all (i.e. returns a do nothing ac-
tion each time) both for the agent being tuned, and for its
fixed opponent. For the analysis visualised in Figure 4 we
used a random agent instead.

We used the default settings for each of the optimisation
algorithms tested. In addition, we experimented with the ex-
ploration settings (parameters k and ε) in NTBEA in order
to gain a better understanding of the algorithm. The results
are reported in Section 5.4.

5.2 Fitness Distribution
Figure 5 illustrates the performance of the agent using the
288 possible parameter settings described in Table 1, sorted
by the average fitness value over 100 trials (i.e. the RHEA
agent with each set of parameters player 100 games against

Figure 5: Sorted average fitness obtained by the agent using
the 288 legal parameter settings. Each of the parameter set-
tings is tested 100 times. Higher score fitness refers to being
stronger than the opponent. The dashed horizontal line refers
to when the parameterised player has identical performance
to the fixed opponent.

a fixed opponent to evaluate its fitness). The blue shadow
shows one standard error either side of the mean. Due to the
inherent noise in the evaluation process, the parameters that
appear as optimal could vary a bit from run to run, but there
are very clear differences between different sets of players,
with the best parameter settings performing much better than
the worst ones. We consider the fact that different agents
play the game with a range of clearly separable abilities as
evidence of skill-depth.

The best parameter setting, according to the 100
tests made of every point in the search space is
(3, true, true, 1, 15) with average fitness 0.6. As shown in
Figure 5, there is a clear difference in performance between
many of the different parameter settings, though also some
which are not clearly separated from each other.

5.3 Observing the N-Tuple Statistics
Figure 6 shows how fitness varies across a number of 2-tuple
parameter choices, again when averaged over all 288 points
in the search space, each evaluated 100 times. Clearly there
are dependencies between the parameter combinations. Note
how most pairwise combinations have an average value of
below zero (averaged over all points sampled). This is due
to the fact that most parameter settings (more than 200 of
the 288 possible as shown in Figure 5) score below zero.

To understand the estimation of parameters by NTBEA
optimizer, we plot in Figure 7 the average fitness for differ-
ent sequence lengths evaluated by the NTBEA in the worst
optimisation trial and a randomly selected successful trail
(optimum found) using a low budget (288 game evaluations)
and a higher budget (2880 game evaluations). As reference,
the average fitness values for different sequence length over



Figure 6: The impact of number of resamplings, muta-
tion rate and the planning horizon (sequence length). z-axis
shows the average fitness when fixing values for two of the
parameters, as shown in x-axis and y-axis.

100 repetitions of games of the agent using all the 288 pos-
sible parameter settings are illustrated using the black solid
curve.

Interestingly, the graph shows big differences in how fit-
ness varies with respect to sequence length depending on
how the space has been sampled, with some runs even incor-
rectly indicating that a length of 5 is best. The best solutions
involve a sequence length of either 10 or 15, and this usu-
ally emerges from the statistics given enough samples. Note
though that the large sample budget runs with the high peaks
differ greatly from the overall statistics (black line).

The individual runs show how the NTBEA samples fitter
regions of the space over the course of a run, which is espe-
cially clear in the large positive spikes for the 2880 budget.

With sufficient budget the NTBEA is able to provide a
better estimation of the performance achieved by different
parameter values, and note how tight the error bars have be-
come for the best sequence lengths of 10 or 15 for the large
2880 budget runs, compared the error bars for worse per-
forming sequence lengths on those runs.

Figure 7: Average fitness for different sequence length eval-
uated by the NTBEA optimizer. The black solid curve shows
the average fitness over 100 repetitions of games of the agent
using all the 288 possible parameter settings, and is used as
a reference. The solid and dashed red curves show the re-
sults of one of the successful trials (optimum found) using
T = 288 and T = 2880 as budget. The solid and dashed
blue curves show the results of the worst trial using T = 288
and T = 2880 as budget.

5.4 Performance Comparison
The performance results of several evolutionary algorithms
are shown in Table 2, with brief notes below.

• The Random Mutation Hill Climber (RMHC) is the sim-
plest evolutionary algorithm, also called a (1+1) EA. De-
spite its simplicity it often performs well. In this case
though it performs poorly due to the high levels of noise.
RMHC(1) uses no resampling, while RMHC(5) resam-
ples each candidate 5 times to alleviate the noise, but at



Table 2: Comparison of different optimisation algorithms
given 288 game evaluations as budget, except where stated
(5x and 10x indicate 5 times and 10 times the standard bud-
get respectively; this was only used for CMA-ES.)

Algorithm Avg. ± StdErr
RMHC(1) -0.29 ± 0.01
RMHC(5) 0.01 ± 0.01

CMA-ES(1x) -0.12 ± 0.04
UH-CMA-ES(1x) -0.09 ± 0.04

SGA 0.03 ± 0.01
CMA-ES(5x) 0.29 ± 0.02

UH-CMA-ES(5x) 0.32 ± 0.03
SWcGA 0.36 ± 0.01
SMEDA 0.38 ± 0.01

NTBEA(1,2,5)- 0.41 ± 0.01
UH-CMA-ES(10x) 0.44 ± 0.02

CMA-ES(10x) 0.48 ± 0.02
SMAC 0.49 ± 0.01

NTBEA(1) 0.50 ± 0.01
NTBEA(1,2) 0.51 ± 0.01

NTBEA(1,2,5)+ 0.51 ± 0.01

the cost of wasted evaluations (the total sample budget
was limited to 288).

• The Simple Genetic Algorithm (SGA) also performs
poorly, in this case due to its inefficient use of the small
sample budget.

• We included CMA-ES due to its high performance across
a wide range of problems. CMA-ES operates in contin-
uous search spaces, so to apply it to these discrete prob-
lems we used a box constraint in the range 0 to 1 in each
dimension, and discretized the continuous value in each
dimension by dividing into equal size ranges within the
unit interval. We also tried the CMA-ES with uncertainty
handling (Hansen et al. 2009) which is meant to be better
suited to noisy problems, but did not improve on stan-
dard CMA-ES, perhaps due to the low sampling budget.
CMA-ES(5x) and CMA-ES(10x) indicate that we modi-
fied the fitness function to use 5 times or 10 times resam-
pling: these used up to 10 times larger sampling budget
(10x indicates that 2,880 games were played during the
optimisation).

• Sliding Window Compact GA (SWcGA) and SMEDA
(Sliding Mean EDA) are new versions of the Compact
GA (cGA) designed to be more sample efficient by in-
corporating a sliding window of candidate solutions. The
SWcGA is described in (Lucas, Liu, and Pérez-Liébana
2017). They both use models to improve sample effi-
ciency, though the models only estimate which parameter
values are most likely to be optimal. In contrast, NTBEA
and SMAC estimate the expected fitness of each parame-
ter setting, and NTBEA goes one step further to also esti-
mate the variances of each parameter setting.

All model based approaches greatly outperformed the
non-model based alternatives in this study. All the ap-
proaches with results on boldface are better than the non-

bold ones with statistical significance, but are not signifi-
cantly different to each other. We ran several version of the
NTBEA with different tuning. The numbers in parentheses
show the n-tuples which were used for each configuration of
the NTBEA. The poor performance of the NTBEA(1,2,5)−
is due to a particular problem we observed. Depending on
the particular combination of k and ε it is possible for the
NTBEA to attempt to sample every point in the search space
at least once. This is not a problem for the smaller n-tuples,
and for NTBEA(1,2,5)+ we fixed it by setting ε to 0.5 and
k to 1.0. See (Lucas, Liu, and Perez-Liebana 2018) for an
explanation of these parameters.

6 Conclusion and further work
In this paper we explored noisy optimisation in the context
of a simple and fast version of Planet Wars which offers a
good degree of skill-depth and is compatible with GVGAI
agents. For future work it would be interesting to compare
the skill-depth of this game with the existing GVGAI games,
both for the single and two-player versions. For the optimi-
sation results in this paper we used a fixed opponent which
means the game can then be treated as a single-player game,
the difficulty of which depends on the strength of the fixed
opponent. Tuning an agent to win a single-player game can
be treated as a standard optimisation problem, though in this
case an exceptionally noisy one due to the random initial
game states and the stochastic nature of the agents.

The results clearly demonstrate how the use of model-
based algorithms (both NTBEA and SMAC) were able to
outperform non model-based alternatives, such as a random
mutation hill climber and a simple genetic algorithm. One
of the main messages of this paper is that games are a nat-
ural source of noisy optimisation problems, and that bet-
ter performance is often obtained by using model-based ap-
proaches to deal with the noise.

NTBEA and SMAC offered similar performance, but NT-
BEA has the advantage of providing more informative out-
put, with detailed statistics for each parameter choice in each
dimension and in each combination of dimensions modelled
by the n-tuples (see Figure 7). NTBEA also offers explicit
control over how exploitative versus how explorative the al-
gorithm should be.

It would be interesting to compare NTBEA to SMAC on
optimizing other algorithms or other games, such as tun-
ing an AI agent for General Video Game Playing. Though
NTBEA has been applied to tune an MCTS agent for Gen-
eral Video Game AI (Sironi et al. 2018) and General Game
Playing (Sironi and Winands 2017), it was not compared to
SMAC or CMA-ES. The recently released NeverGrad tool-
box also provides a set of optimisers for further comparisons
(Rapin and Teytaud 2018).

The choice of tuples used in NTBEA is naively selected
here, and also little effort was made to tune the other pa-
rameters of the NTBEA, which are the exploration constant
k and the progressive widening parameter epsilon. The se-
lection of tuples with a-priori knowledge of the agent to be
tuned could further increase the efficiency of the optimisa-
tion. Naturally a high-level NTBEA could be used to tune
an NTBEA running for a specific problem.



The paper provides further evidence of the importance of
parameter tuning. The win-rates of the agents evaluated in
Figure 4, show how a tuned agent beat an untuned agent
84 games to 16 in one case and 100 games to zero in the
other case. Parameter tuning is important, and model-based
methods often provide the most efficient approach, espe-
cially when the objective function is noisy.

Finally, it is worth emphasizing that the NTBEA does not
just provide useful statistics on the best combinations of pa-
rameter, but actively uses those statistics to inform every de-
cision about which point in the search space to sample next
during a run.

References
Bartz-Beielstein, T. 2006. Experimental Research in Evolu-
tionary Computation – The New Experimentalism. Springer.
Fernández-Ares, A.; Mora, A. M.; Merelo, J. J.; Garcı́a-
Sánchez, P.; and Fernandes, C. 2011. Optimizing player
behavior in a real-time strategy game using evolutionary al-
gorithms. In Evolutionary Computation (CEC), 2011 IEEE
Congress on, 2017–2024. IEEE.
Hansen, N.; Niederberger, A. S. P.; Guzzella, L.; and
Koumoutsakos, P. 2009. A method for handling uncertainty
in evolutionary optimization with an application to feedback
control of combustion. IEEE Transactions on Evolutionary
Computation 13(1):180–197.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential model-based optimization for general algorithm
configuration. In International Conference on Learning and
Intelligent Optimization, 507–523. Springer.
Jin, Y. 2011. Surrogate-assisted evolutionary computation:
Recent advances and future challenges. Swarm and Evolu-
tionary Computation 1(2):61–70.
Kunanusont, K.; Gaina, R. D.; Liu, J.; Perez-Liebana, D.;
and Lucas, S. M. 2017. The n-tuple bandit evolutionary
algorithm for automatic game improvement. In 2017 IEEE
Congress on Evolutionary Computation (CEC).
Liu, J.; Perez-Liebana, D.; and Lucas, S. M. 2017. Bandit-
based random mutation hill-climbing. In 2017 IEEE
Congress on Evolutionary Computation (CEC).
Lucas, S. M.; Mateas, M.; Preuss, M.; Spronck, P.; and To-
gelius, J. 2015. Artificial and computational intelligence in
games: Integration (dagstuhl seminar 15051). In Dagstuhl
Reports, volume 5. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.
Lucas, S. M.; Liu, J.; and Pérez-Liébana, D. 2017. Effi-
cient noisy optimisation with the multi-sample and sliding
window compact genetic algorithms. In Computational In-
telligence (SSCI), 2017 IEEE Symposium Series on. IEEE.
Lucas, S. M.; Liu, J.; and Perez-Liebana, D. 2018. The N-
Tuple Bandit Evolutionary Algorithm for Game Agent Op-
timisation. In 2018 IEEE Congress on Evolutionary Com-
putation (CEC).
Lucas, S. M. 2018. Game AI Research with Fast Planet
Wars Variants. In IEEE Conference on Computational Intel-
ligence and Games.

Perez-Liebana, D.; Liu, J.; Khalifa, A.; Gaina, R. D.; To-
gelius, J.; and Lucas, S. M. 2018. General Video
Game AI: a Multi-Track Framework for Evaluating Agents,
Games and Content Generation Algorithms. arXiv preprint
arXiv:1802.10363.
Rapin, J., and Teytaud, O. 2018. Nevergrad - A gradient-
free optimization platform. https://GitHub.com/
FacebookResearch/Nevergrad.
Sironi, C. F., and Winands, M. H. M. 2017. On-line pa-
rameters tuning for Monte-Carlo tree search in general game
playing. In 6th Workshop on Computer Games (CGW).
Sironi, C. F.; Liu, J.; Perez-Liebana, D.; Gaina, R. D.; Bravi,
I.; Lucas, S. M.; and Winands, M. 2018. Self-adaptive mcts
for general video game playing. In European Conference on
the Applications of Evolutionary Computation. Springer.
Yannakakis, G. N., and Togelius, J. 2018. Artificial Intel-
ligence and Games. Springer. http://gameaibook.
org.


