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Abstract—Cooperation between humans and AI is an area
of research explored more frequently in recent literature. Yet,
environments used for this purpose are generally lacking in
complexity. In this paper, we describe the first Tabletop Games
Framework (TAG) competition designed around the Pandemic: a
cooperative board game where players aim to cure the world of
disease. We discuss the many AI challenges introduced through
this environment, detail the competition setup, present baseline
results for sample AI players and explore the game parameter
space for interesting insights, such as the most dominant player
roles: the Scientist and the Medic.

Index Terms—Tabletop Games, Board Games, Pandemic,
General Game Playing, Monte Carlo Tree Search, Game Analytics,
MAP-Elites, N-Tuple Bandit Evolutionary Algorithm

I. INTRODUCTION

Modern tabletop games encompass a wide range of envi-
ronments, with deep challenges for AI research. These are
relevant to game-playing AI through imperfect information,
strategic planning and dynamic action spaces, as well as to
procedural content generation, due to the multitude of content
often included in such games, from tokens to dice, cards, game
boards and more. The Tabletop Games Framework (TAG) [1]1

provides access to various modern tabletop games implemented
in Java. TAG aims to encourage and support research into a
diverse set of environments. Games included range from simple
abstract pen-and-paper games such as ”Tic-Tac-Toe” and ”Dots
and Boxes”, to card games such as ”Exploding Kittens” [2],
”Poker” [3] and ”Dominion” [4], to strategic board games such
as ”Settlers of Catan” [5] and ”Terraforming Mars” [6], [7].

One of the TAG games is Pandemic [8]: a collaborative 2-4
player game where players have to work together in order to
cure 4 types of diseases which spread throughout the world,
while racing against time. Designed by Matt Leacock and
inspired by the SARS epidemic of 2003 – though the theme
is still intriguing for current times of the Covid-19 pandemic
– the game was reported by publisher Z-Man Games to have
sold over 5 million copies worldwide by 20212. Further, the
game has won many awards and is one of the most successful
cooperative games [9].

Due to its success, several human tournaments have been
run for Pandemic3. Given its cooperative nature, a set of rules
for competitive settings was put in place to allow for fair
comparisons of teams of players by reducing the randomness
affecting the games (Pandemic Survival series). We take

1http://tabletopgames.ai
2https://tinyurl.com/pandemic-5-million
3https://tinyurl.com/pandemic-survival-rules

inspiration from these events and bring the Survival series
forward as an AI challenge, with the main aim of improving
upon game-playing AI for Pandemic.

Its cooperative nature makes the game currently unique
within the TAG framework, and also one of the most difficult
games which the general-purpose AI players included in
TAG cannot yet solve. With communication between players
disabled in our setting, we focus on the main problem of
adaptability and coordination of individual players in the
complex Pandemic environment. Previous environments and
competitions exploring player cooperation centred around the
card game Hanabi [10], [11], having seen great progress in AI
strength through the means of the competition. Pandemic adds
more strategic depth and larger state and action spaces, raising
the bar once again.

The summarised contributions of this paper are two-fold:
first, we describe the first TAG competition which will be
hosted at the IEEE Conference on Games 2022, using the
board game Pandemic as a test-bed; we perform deep analysis
of the environment and challenges present for AI game-playing
research. Second, we discuss ongoing research into finding a
spectrum of Pandemic game parameter configurations which
allow for interesting games of varying difficulty.

II. RELATED WORK

Pandemic was previously proposed as a challenge for
human-AI cooperation by Sauma Chacón and Eger [12]. They
acknowledge the limited cooperative environments for AI
and discuss the difficulty of Pandemic resulting from its rule
interactions. They largely focus on the problem of coordination
with human players, when communication is limited: therefore,
the AI players are required to plan strategies without knowledge
of what the humans’ goals may be, with a further need to
balance between short-term and long-term objectives. The
authors propose an approach focused on plan recognition to
tackle the coordination issue (later expanded in [13]): the AI
player attempts to infer possible future goals for the other
player based on their action history, and adapts its own plans
as a result to maximise the group outcome.

The authors expand their focus in follow-up work [14].
They use A* planning for effective search through the state
space, selecting goals through a rule-based approach to inform
the agent’s priorities. They combine this with Monte Carlo
simulations for trying out different potential card draws, and a
complex heuristic for calculating the value of states based on
several features: the agent’s distance to highly infectious areas
which need to be treated, the distance to the closest research



station, the value of cards in hand and discarded, and the state
of infections around the world (all concepts will be detailed
later in the paper). Their results show their agent to be quite
a strong player, managing to win up to a third of the games
in the easiest setting tested, compared to 86.3% reported by
human players4. Particularly, their insights into the potentially
best player role combinations are taken forward into our work
to inform our competition configurations.

In experiments with human players, Sauma Chacón and
Eger [15] report a correlation between the perceived skill level
for the agent and the perceived helpfulness, aligning with its
plan recognition abilities and highlighting the need for better
coordination in such games.

Sfikas and Liapis [16] take a different approach, using a
Rolling Horizon Evolutionary Algorithm [17] to create plans
for all agents, with a centralised approach to decision-making.
They further make use of abstractions to simplify the action
selection process, by introducing macro-actions which group
several low-level decisions into a more abstract goal (e.g. travel
to a city and treat the infection there). They report up to
40% win rate, especially with shorter horizons (shorter-term
planning, allowing for more iterations of the algorithm and
more accurate statistics). Later, they highlight that 2 of the 3
loss conditions are most likely to trigger, with short horizons
most likely to lead to a scenario where players efficiently
contain the infection, but run out of time before they cure all
disease [18].

Although our own setup proposed is most similar to the
work by Sauma Chacón and Eger and as presented previously
by Gaina et al. [19], we expect a variety of methods inspired by
previous work to be submitted to our Pandemic competition.

III. PANDEMIC THE BOARD GAME

Pandemic is played with 2− 4 players who share the same
goal: curing all diseases. We recommend the reader to check the
full game rules5. The game is played over a board represented
by a graph of major cities in the world (such as London, Delhi,
Tokyo or Buenos Aires), separated into 4 regions with colours
matching the 4 diseases in play. The diseases infect cities more
and more over time, as decided by infection deck cards, with
a limit as to how infected a city can get before causing an
outbreak into adjacent cities. We refer to adjacent cities as
cities connected by an edge in the board graph.

Players execute up to 4 actions during their turn, and can
move between cities, placing research stations, removing or
curing diseases, and playing cards from their hands to execute
actions, while making the most of their unique player role
abilities (7 player roles available in total). Players draw cards
at the end of their turn from the player deck, which includes
city cards (with names matching cities on the board), Event
cards (with special abilities, detailed below) and Epidemic
cards (which trigger epidemics, detailed below). New cards
are drawn from the infection deck afterwards, leading to new

4https://tinyurl.com/pandemic-statistics
5https://tinyurl.com/pandemic-rules-pdf

infections spreading throughout the world. To cure a disease,
players must be at a research station and play 5 cards matching
the colour of a disease not already cured. Diseases can be
eradicated if they are cured and all infections are cleared from
the board, which means no new infections for those diseases
will appear on the board in the future.

There are multiple ways to lose the game: disease cubes
used to infect cities may run out; the player deck of cards may
run out; or there may have been too many outbreaks.

A. Action space

The action space is dynamic: actions available to players
vary every turn depending on the game state. The action types
are as follows:

• Move: Move a player’s pawn to an adjacent city. Cities
with research stations are also considered adjacent to each
other. Players may discard cards in hand to either move
to the city named on the card, or to any city, if the card
discarded matches the player’s current location.

• Build a Research Station: Discard a city card in hand that
matches the player’s current location to place a research
station at the current location. If the limited supply runs
out, this action will instead move any other already built
research station to the current location.

• Treat Disease: removes 1 infection from the current
location of the player. If the disease is cured, all infections
of that colour are removed with a single action.

• Share Knowledge: if 2 players are in the same location,
they can trade (or exchange) 1 card which matches the
city they are currently in.

• Discover a Cure: if the player is at a location with a
research station, they may discard 5 city cards matching
the colour of a disease not already cured to cure it.

The highest number of actions available for one decision
we have observed so far6 is 265, and the lowest is 11.

B. Survival rules

In our competition setting we use Pandemic Survival rules,
similar to human tournaments for this game. Several limitations
are imposed as a result on the Event cards available. We limit
the player roles to only 5 out of 7 options as well, removing
”Contingency Planner” (who can play discarded Event cards;
since we only use 2 such cards, the role has diminished benefits)
and ”Researcher” (who can trade cards more freely; sample AI
players are not able to use this role to its full advantage, so we
keep it turned off for this first edition of the competition). We
use only 2 event cards: Airlift (allows to move any pawn to any
city) and Government Grant (allows to add a research station
to any city). Player roles either have an effect that modifies
how a basic action is played, or how a game rule is applied;
or allow the player to perform a special action:

• Dispatcher: Effect – may perform move actions with any
player’s pawn. Action – move any pawn to a city which
already contains another pawn.

6http://www.tabletopgames.ai/wiki/games/game stats.html



Fig. 1. Visualisation of the board game Pandemic in TAG

• Medic: Effect – remove all infection of one disease when
treating disease in a city. Effect – infections from cured
diseases are automatically removed (and further such
infections blocked) from the city where the player is.

• Operations Expert: Effect – does not require a card to
build a research station. Action – discard any city card in
hand to move from a city with a research station to any
other city.

• Quarantine specialist: Effect – prevents disease from
infecting the city the player is currently in, and all
connected cities.

• Scientist: Effect – requires 1 less card to cure disease.

C. State representation

The Pandemic game state is made up of several components,
the relevant ones for the competition being detailed next. Graph
board: a collection of board nodes (cities), where each has a list
of its neighbours, players currently in the city, level of infection
from the 4 diseases, and whether a research station was built
there or not. The graph information is read in automatically
from a JSON file. Epidemic flag: informs whether an epidemic
card was drawn by a player, triggering the epidemic branch of
the rule graph (the infection rate increases; the city card at the
bottom of the infection deck fully infects the corresponding city
and is discarded; and all discarded infection cards are shuffled
and placed back on top of the infection deck). Research station
locations: a list of cities where research stations have been
built. Areas: one per player, containing their role card and
cards in hand. An additional area stores the following: the
player deck, the infection deck, counters for the number of
infection cubes remaining for each disease, the state of each

disease (not cured, cured, or eradicated), the outbreak counter
and the infection rate counter (which decides how many cards
should be drawn from the infection deck at the end of each
player’s turn).

AI players receive a copied Java object containing all of this
information, and they may access and modify the information
freely. The copy received will be largely accurate to the real
current game state, with the exception of the face-down decks
of cards (infection deck and player deck), which are hidden
information and are randomly shuffled in copies sent to players.

D. Implementation specifics

The game is implemented within the Tabletop Games
framework [1], using a modular graph-based structure for its
rule definition. Node types included in its implementation are
as follows. Player action node: expects a player action to be
sent and executes it appropriately. Condition node: checks a
condition (e.g. if enough actions have been executed by the
current player, or they decided to end their turn). Rule node:
executes one rule of the game (e.g. infect cities, draw cards
for players, or decide next player).

The game engine then keeps track of the whole rule graph
structure and its current position in the graph, executing rules
appropriately. Each player receives this game model, and they
may perform simulations of possible futures by passing an
action and a game state through the model, which will return a
possible next state resulting from the applied action. Internally,
the rule graph is traversed from the current position until a
node requiring a player decision is reached; therefore, multiple
rules may be applied in-between player decisions.



Further, in our implementation, Event cards in the game are
allowed to be played as regular actions during a player’s turn
only. However, they do not count towards the limit of 4 actions
per turn (they remain free actions, but they are restricted to a
player’s turn, unlike original game rules which allows playing
event cards at any point).

Lastly, we define a generic heuristic function which approxi-
mates the goodness of a game state. The value returned for any
game state is a linear combination of several features, with tun-
able weights allowing to adjust how much a particular feature
influences the final result. The weight values presented here
are manually adjusted from expert knowledge and preliminary
experiments. Equation 1 describes the resulting function, where
st is the current game state at time step t, ϕi is the value of
feature i and wi is the corresponding weight for feature i. The
heuristic simply returns 10 if the game is won, or −10 if the
game is lost.

h(st) =

7∑
i=1

ϕi × wi (1)

Features included are detailed next. ϕ1: the number of
discovered cures, w1 = 0.6. ϕ2: the number of disease cubes
remaining (not on board), w2 = 0.1. ϕ3: the number of player
cards remaining in the draw pile, w3 = 0.1. ϕ4: the number of
cards in the current player’s hand, w4 = 0.2. ϕ5: the number of
outbreaks which have occurred in the game so far, w5 = −0.2.
ϕ6: the number of research stations on the board, w6 = 0.2.
ϕ7: whether the player is currently at a research station or not,
w7 = 0.3.

IV. GAME ANALYSIS & AI CHALLENGES

Pandemic is a complex and deeply strategic board game,
relying on not only individual high level of skill, but also
player coordination to achieve success. As such, we identify
several challenges which highlight Pandemic as an exciting
environment for AI research.

Coordination. Pandemic is a cooperative game played
by multiple players who must together achieve the winning
condition. As a result, coordination of plans and adaptability
to each other’s plans and behaviours are key for a favourable
outcome. This challenge is the main focus of the work by
Sauma Chacón and Eger [12].

Large and dynamic action space. There are many actions
available to players at any one time (as many as 265 options to
choose from for one decision have been recorded so far). The
resulting large branching factor raises the problem of focus,
prioritisation and abstraction: which actions should be tried
first, which can be directly discarded as not relevant in the
current game state? Further, the dynamic nature of the action
space means an adaptive algorithm must be used, which does
not rely on fixed inputs or strong association between action
index and actual action effect. Previous approaches which have
shown great results in fixed-size action spaces, such as Rolling
Horizon Evolutionary Algorithms with crossover [17], are not

directly applicable here due to the disconnect between agent
interface and action effects.

Large state space. Pandemic features a large state space,
with a large world graph where each node contains detailed
information about many other components in the game. A low
bound estimate is 1.07 × 10158 possible game states in the
original game, with 170 components per state recorded in our
implementation – each with several varying properties. This
aspect adds another layer of complexity and again challenges
the focus of players: being able to pinpoint the most important
parts of the state space (e.g. the region in the world which
has seen most infections and is in danger of resulting into
outbreaks) is critical to performing well in the game.

Conflicting objectives. The game is designed with several
conflicting objectives in mind, lending itself quite naturally
to multi-objective optimisation approaches. The players must
complete their winning condition, while juggling many other
aspects of gameplay to avoid the many losing conditions: they
must be able to manage cards effectively (in their own hand due
to the limit of cards they may hold at one time; but also between
each other, and trading efficiently); move around the board
purposefully; take care of particularly infectious areas; build
research stations strategically to allow for more flexibility and
maximise winning chances; as well as attempting to maximise
individual player effectiveness (e.g. avoiding grouping without
an immediate gain).

Asymmetric player roles. Each player is assigned a unique
role with special effects or actions they may perform. Players
must be able to adapt their gameplay and strategy based
on the roles currently in play, and use their abilities to the
fullest. Some roles may be more beneficial than others in
certain circumstances, thus it is important to learn how to
manage potentially weaker player roles, or roles for whom
their abilities mean a much smaller subset of actions is relevant
(e.g. the Quarantine Specialist should focus more on protecting
infectious areas, and less on travelling across the board).

Long-term planning. Unlike many other games used
in research, Pandemic is a long board game, which takes
human players hours to complete. This can be sped up in a
digital implementation, where AI players are able to calculate
possibilities and make decisions much faster than humans.
However, there remains a considerable slow-down limiting the
resources which can be spent efficiently for high performance.
Most importantly, the large number of decisions required from
AI players during the course of a game means that it becomes
difficult to perform searches far enough into the future to obtain
useful information for approaches such as statistical forward
planning.

Uncertainty and hidden information. Finally, hidden
information and the resulting uncertainty is a long-standing
challenge for AI players, which appears often in many modern
game environments. In Pandemic, the decks of cards which
infect cities across the board, and which allow players to
perform their actions, are both shuffled face-down decks of 48
and 50 cards, respectively. There are approximately 3.77×10125

possible starting states in our setup, if player roles are fixed.



Being able to adapt to unexpected results, planning for the
worst, and handling dangerous game situations efficiently is
again of key importance.

V. COMPETITION FRAMEWORK

The objective for the competition is to submit an agent
which is capable of achieving high level of play across several
versions of the Pandemic board game, with varying game
parameters, aimed at providing different levels of difficulty. The
framework code is open-source and all competition details are
available online7. This includes data logging, video recording
and optimisation tools usable by participants to analyse and
improve their entries.

As previously mentioned, we are employing the Pandemic
Survival rules; the same random seeds and game parameter
configurations will be used to compare different entries. Due
to its digital implementation, we are able to tweak some of
the game parameters to obtain different game configurations
of varying difficulty.

Participants submit 1 algorithm, in a zip archive
including all files necessary to run, via email to
tagframework@gmail.com. A 100ms decision making
budget is imposed for all submissions. The same algorithm will
be used for each player in (2-4)-player Pandemic games within
the Tabletop Games framework. 4 training game configurations
were made publicly available8 to inform AI agent design, with
v0 and v2 designed as easier variations (less cards needed
to cure disease), and v1 and v3 as harder variations. All
configurations have fixed player roles. We refer to parameters
as in the original board game as default (with player roles
randomly assigned at the start of the game).

We will test entries locally on 3 different game configurations,
running 100 repetitions per submission per configuration, and
rank all entries by total win rate, with several tiebreaks,
following the official Pandemic Survival rules (averages across
all games played): τ1 game duration in number of turns
(minimum in winning games; maximum in losing games),
τ2 maximum number of diseases cured, τ3 minimum number
of outbreaks, τ4 minimum number of cities about to outbreak,
τ5 minimum number of disease cubes on the map, and finally
τ6 the maximum number of diseases eradicated.

The competition is hosted as part of the IEEE Conference on
Games 2022 in August 2022, where the entry ranking highest
across all test configurations will be declared the winner of the
competition, and will receive $500 money prize sponsored by
the IEEE Computational Intelligence Society. The results will
be published on the competition website after the conference.

A. Sample AI player performance

We select several of the general AI players included in TAG
to present baseline results on several game configurations. Both
OSLA and MCTS detailed below use the Pandemic heuristic
function (see Section III-D) to evaluate game states.

7http://www.tabletopgames.ai/competition/cog2022/
8https://tinyurl.com/pandemic-training-config

TABLE I
RESULTS FOR 2-PLAYER GAMES, WITH 100 ITERATIONS PER MATCH.

PLAYERS ARE RANKED BEST TO WORST (TOP TO BOTTOM) USING
COMPETITION RANKING CRITERIA.

Default parameter configuration
Player Wins τ1 τ2 τ3 τ4 τ5 τ6
OSLA 0 47.4 0 8 16.2 37.5 0

Random 0 46.4 0 8 13.9 32.7 0
MCTS 0 46.2 0.02 8 13.1 31.9 0

Parameter configuration v0
Player Wins τ1 τ2 τ3 τ4 τ5 τ6
OSLA 100 28.8 4 0.02 1.63 13.1 0.33
MCTS 100 61.7 4 0.07 1.89 15.3 0.28

Random 0 153 0.47 1.53 11.8 79.3 0.01
Parameter configuration v1

Player Wins τ1 τ2 τ3 τ4 τ5 τ6
Random 0 46.7 0 8 14.9 34.4 0
MCTS 0 44.4 0.03 8 13.4 32.5 0.28
OSLA 0 29.1 0 8 14.1 33.3 0.01

Parameter configuration v2
Player Wins τ1 τ2 τ3 τ4 τ5 τ6
OSLA 100 38.3 4 0 2.13 36 0.11
MCTS 99 56.5 3.99 0.1 2.36 39.7 0.27

Random 0 151 0.48 4.5 15.3 95.8 0
Parameter configuration v3

Player Wins τ1 τ2 τ3 τ4 τ5 τ6
Random 0 47.7 0 8 14.3 35.9 0
MCTS 0 46.9 0.01 8 14.3 33.9 0
OSLA 0 32.6 0.02 8 16.1 37.8 0

• Random: Chooses actions to play uniformly at random
out of those available.

• One-step Look Ahead (OSLA): Simulates the effect of
all possible actions on the current game state. The action
selected is that which leads to the most promising next
state.

• Monte Carlo Tree Search (MCTS) [20]: Builds a
tree of possible actions, choosing to explore the most
promising parts of the search space first. Statistics about
the most promising actions are recorded and used to
ultimately decide which action to choose when the budget
is exhausted. The search restarts at the next decision-
making point with an empty tree. For details of MCTS
parameters the reader is recommended to check the TAG
documentation9 and repository for default parameters10.

Previous results for Pandemic in TAG [1] reported 0% win
rate for all agents. We expand previous results here with detailed
analysis into their gameplay and performance, pertaining to
key aspects as evaluated in the competition. Results for all
public game configurations used in the competition, as well as
the default parameter settings (as per the original board game)
are presented in Table I.

In these initial experiments, OSLA appears to win games
more efficiently than both MCTS and random in the easier
game configurations. It manages to better keep infections under
control, generally ending up with a better state of the board
regarding the number of infections present and dangerous areas.
We hypothesise that this is largely due to it finishing games

9http://www.tabletopgames.ai/wiki/agents/MCTS
10https://tinyurl.com/MCTS-params



much faster than MCTS, the game having less of a chance
to spread the infection beyond control. This also happens in
losing games – OSLA loses faster than MCTS.

On a closer inspection into gameplay styles emerging, OSLA
appears very conservative with its cards and chooses to limit
movement and rarely departs from its starting position. It relies
instead on luck to draw the correct cards and makes use of the
research station already built at the starting location to cure
disease. As players are likely to be in the same location, they
can also exchange cards more to easily gather the required
number for curing disease; in fact, OSLA is 4 times more
likely to use the Share Knowledge action during its games than
MCTS. Due to the very short lookahead, OSLA is unable to
see the advantage of moving around the board, therefore failing
to control disease in more punishing game configurations.

On the other hand, MCTS performs many more movement
actions (over 60% of its actions are move actions, compared to
15% for OSLA; half of these use cards in hand), the strategy
resembling more that of human players. MCTS players spread
out across the board more as well, visiting over 60% of the
cities throughout a game; approximately 40% of the locations
visited are infected cities, suggesting MCTS movement to be
towards dangerous areas which should be visited and treated.
However, MCTS is unable to manage its cards appropriately,
and ends up discarding valuable cards which could be used for
disease cures in order to execute its movement-heavy plans.

Despite using the exact same heuristic to inform their
decisions, we see very different playstyles emerging due to the
difference in planning methods and possible futures observed.
In most cases, the players lose because of the outbreak loss
condition triggering. However, there are cases for the random
player in the 2 easier public game configurations (v0 and v2)
where the game is lost due to no more player cards remaining in
the deck. Overall, these findings suggest that efficient gameplay
should avoid outbreaks, while maximising the benefit of each
action taken to finish the game as fast as possible.

We finally note that changing the game parameters and
overall difficulty (resulting from either reducing the pressure
of loss conditions, or simplifying the win condition), our
AI players managed to find situations not covered by the
original ruleset. One such example is the need to add a 4th

loss condition: in very long games with low loss pressure, it
could happen that the infection deck could run out of cards.
A detailed study of edge-cases brought to light by different
playing strategies is hereby noted as future work.

VI. EXPERIMENTS

Before concluding, we discuss a set of experiments em-
ploying MAP-Elites [21] and N-Tuple Bandit Evolutionary
Algorithm (NTBEA) [22] to tune the game parameters auto-
matically and explore the space of possibilities more in-depth.

A. Map-Elites

Map-Elites is a Quality Diversity algorithm used to illuminate
search spaces. Unlike other evolutionary algorithms, it keeps
track of a variety of solutions which meet the required fitness

functions, but which show interesting diversity in phenotypical
(behavioural) space. The algorithm has been previously used
to explore search spaces for game parameters [23], [24], agent
parameters [25], level generation [26], game-playing [27] or
heuristic weights [28], to name a few applications.

In our implementation, the algorithm runs for 1000 iterations.
It begins by randomly initialising 200 solutions (20% of the
iterations), keeping the best ones in a 7-dimensional elite
map. For each evaluation, 10 simulations are run, using OSLA
to play 2-player games. A fitness function (detailed below)
is used to give the parameter configuration a value, and 7
behaviours are tracked (detailed below). The cell in the elite
map indexed by the behaviour values is filled in with the
game parameter setting if either the cell is empty, or the
fitness value previously recorded there is lower. After random
initialisation, the process continues through evolution: 1 elite is
randomly chosen from the map and mutated (parameter values
are changed with 0.3 probability). The new game parameter
configuration is evaluated and inserted into the map as described
above. The evolution concludes after the iteration budget is
used up, returning the resulting elite map for analysis.

B. Setup

1) Game parameter space: The parameter space for Pan-
demic is depicted in Table II. Not all of the parameters are
modified, indicated with a dash symbol (’-’) in the value range if
fixed to the default value instead. The resulting search space size
is 48,600 (2-player games) and 1,215,000 (4-player games). We
note that with 1000 iterations we are able to only explore 2%
of the search space for 2-player games and 0.08% of the search
space for 4-player games. Future work will explore means of
more efficient sampling of solutions for better coverage.

2) Fitness function: The fitness function used is the differ-
ence of the agent’s win rate across all simulation games to a
target win rate, bounded within [0,1]. We run 3 different sets
of experiments, setting the target to 10%, 50% and 100% in
order to explore a variety of difficulties.

3) Behaviour Characterisation: The behaviours recorded for
each solution are averaged across the 10 simulations performed
during an evaluation. We record: β1 the number of outbreaks
that occurred during the game. β2 the minimum number of
disease cubes remaining. β3 the number of cards remaining
in the player deck. β4 the number of cards remaining in the
infection deck. β5 the number of diseases cured or eradicated
(β6). β7 the number of infection cubes on the board at the end
of the game. All behaviour values are normalised and placed
in bins in range [0.0, 1.0] with step of 0.2.

C. Results

We present a subset of the results in Figure 2. The rest of
the results are made available online 11. Overall, we observe
low coverage of the entirety of the behaviour space (0.18%),
with the 10% target win rate populating the least of the
space available in the elite map. If we look at pairings of

11https://tinyurl.com/results-pandemic-cog-22



TABLE II
PANDEMIC PARAMETER SPACE.

Idx Parameter Name Description Type Default
Value Value Range

1 nEpidemicCards Number of epidemic cards in the Player deck Numerical 4 2, 4, 6
2 loseMaxOutbreak Maximum number of outbreaks before loss Numerical 8 6, 8, 10
3 nCardsForCure Number of city cards required to cure disease Numerical 5 2, 3, 4, 5
4 maxCardsPerPlayer Maximum number of cards in a player’s hand Numerical 7 5, 7, 9
5 maxCubesPerCity Maximum amount of disease in a city before outbreak Numerical 3 3, 4, 5
6 nInitialDiseaseCubes Number of cube tokens in the game per disease Numerical 24 20, 24, 30
7 nCardsDraw Number of cards players draw at the end of turn Numerical 2 1, 2

8-11 player0Role (or 1,2,3) The role for players 0,1,2,3 Categorical Any Scientist, Quarantine Specialist, Dis-
patcher, Medic, Operations Expert

12 nCubesEpidemic Disease added to the city infected in an epidemic Numerical 3 –
13 nInfectionsSetup Number of steps during the infection setup Numerical 3 –
14 nInfectionCardsSetup Number of infection cards drawn during setup per step Numerical 3 –
15 nCubesInfection Infections added to a city on infection card draw Numerical 1 –
16 survivalRules Whether the survival rules are active or not Boolean True –

Fig. 2. Visualisation of 2D elite maps pairing 3 behaviours: β1 outbreaks, β3 cards remaining in the player deck and β5 cured diseases (see Section VI-B3).
Colours indicate fitness (the lighter the colour, the better the fitness). First 3 figures have target win rate 100%, the last figure has 50% target win rate.

the behaviours, we notice that β6 is the behaviour for which
variations are the hardest to find, as the agents do not manage to
eradicate diseases often. We highlight in particular that games
are generally easier to win early (as players cannot retrieve
discarded cards, and it may happen that a game becomes
unwinnable if enough cards matching one disease are discarded,
a scenario likely to happen with low-skilled AI). However,
MAP-Elites records games where the win appears later in
the game (when under 40% of the cards in the player deck
are left, which indicates timing). One such instance is the
following combination of game parameters: {4, 10, 3, 9, 5,
20, 1, Operations Expert, Dispatcher} (order matches that in
Table II). This is an easier variation, but using player roles
which we analyse in the next section as not the best.

The last image in Figure 2 shows one example when
optimising for 50% OSLA win rate. In this case, both all-
wins and all-losses are given low fitness, which means maps
are fuller but also have less variety in fitness, consistent with the
baseline results presented in Section V-A. However, MAP-Elites
is able to find some variants with high fitness (and therefore
more balanced win rates, games of medium difficulty). The
parameters which show up in these configurations most are 8
maximum outbreaks, 9 cards in hand maximum, 3 cards for cure
and the Quarantine Specialist player role. This configurations
favours OSLA’s playstyle in particular, focusing on reducing
the difficulty in curing disease, but loss conditions are kept as
default, or do not have a big impact on the result.

D. Parameter statistics

Lastly, we used NTBEA, a TAG built-in tool for noisy
optimisation of agent, game and heuristic parameters, to gather
statistics about the best and worst parameter settings. The same
experimental setup as for MAP-Elites is employed.

Most notable in all experiments is the dominance of the
Scientist player role, which allows to cure disease with 1 less
card than normally required: this role achieves a fitness of
0.903± 0.016 as player 0 and 0.934± 0.013 as player 1 when
optimising for 100% target win rate (maximum 1, minimum 0).
The use of this role significantly reduces the difficulty of the
game, with the Medic close behind (and the best partner for the
Scientist), whereas there is no noticeable difference between
the other player roles. Other parameters adjust the difficulty as
expected (e.g. more outbreaks allowed before game end results
in higher win rates). The nCardsForCure parameter has the
most impact on the game’s outcome (with 0.948±0.056 fitness
with value 2 and 0 with value 5; standard deviation at 0.46) and
nCardsDraw the least (with only 0.006 standard deviation).
We hypothesise that this is due to the outbreak loss condition
triggering the most, meaning players benefit from being able
to win quicker, but not necessarily from given more turns if
the loss conditions are still very punishing.

Repeating the same experiments, with the MCTS player
used for simulations instead, reveals the Dispatcher role as the
weakest, averaging 0.722± 0.043 fitness as player 0 and only
0.310±0.087 as player 1 (target win rate 100%). This particular



role can be very strong due to the movement flexibility it offers,
especially in combination with a Medic or Quarantine Specialist
– however, the AI players used in these experiments are not
skilled enough to be able to use it to its full potential and
cannot make use of its advanced strategic mechanics.

More in-depth statistical analysis on parameter choices and
exploration of parameters with more advanced AI players and
different playstyles is noted as an area for future work.

VII. CONCLUSIONS

This paper described the first Tabletop Games framework
(TAG) competition hosted at the IEEE Conference on Games
2022, focused on the board game Pandemic. We discussed the
challenges introduced in this environment relevant for game-
playing Artificial Intelligence research, presented baseline AI
player performance with in-depth analysis, and showed that
interesting variations of the game parameters can be found by
employing Quality Diversity algorithms such as MAP-Elites.
We hereby conclude by inviting participation in this and future
TAG competitions.

We recommend for participants, as a good place to start
tackling the challenge, to reuse agents from the framework (and
optimise their parameters); customise and tune heuristics; write
rule-based agents; add new agents, e.g. Rolling Horizon Evo-
lutionary Algorithms [17]; use macro-actions or goal-oriented
planning; and finally to design new game configurations to
augment the training set, employing the TAG analysis tools to
optimise their submission.

Finally, we acknowledge the wider use of the Pandemic
board game in other research or application areas, such as
educational benefits for teaching cooperation, teamwork and
team-building exercises [29], [30], and its potential application
to handling real-world pandemics as emphasised by Larry
Au [31]. With communication between players allowed, the
study of language and emergent means of communications was
explored by [32], the findings recommending the use of such
games for learners of foreign languages. We end this paper
with an optimistic statement on the value that the Pandemic
board game and the proposed competition described in this
paper can bring not only to the development of AI research,
but to the world and society on a larger scale.
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