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Abstract

General video game playing aims to design an artificial agent capable of rational thought, which would
achieve high-level play in any game, thus needing to remove domain knowledge and introduce techniques
to gather information and statistics about the previously unknown game. While Monte Carlo Tree Search
has dominated the area, Rolling Horizon Evolutionary Algorithms (RHEA) were shown in early work to
have the potential of reaching an even better performance. This thesis presents a series of experiments car-
ried out to analyse the performance and behaviour of RHEA, which evolves, online, a sequence of actions
to play in a game. We analyse its various properties and parameters, as well as combinations with other
algorithms. Results obtained are favourable and outperform previous state-of-the-art in several games. A
deeper visual analysis tool, VERTIGØ, was created to enable the capture of statistics live during any of
the games within the General Video Game AI framework. The features extracted were also used to predict
RHEA’s performance, with great results even from the very early stages of a game. The multitude of pa-
rameters resulting from the several studies led to work on automatic optimisation, using the N-Tuple Bandit
Evolutionary Algorithm and several other simpler methods. The algorithm’s parameters were tuned both
offline and online with mixed results, but high promise is found in helping the algorithm generalise better
across a wider range of games, and even observe first win rates in extremely difficult environments. Ap-
plications of the algorithm in different games are also explored: RHEA is very aggressive in Pommerman,
competitive in Tribes and a top contender in tabletop and real-life physics-simulating games. The thesis
finally discusses new research directions and how RHEA could interact with humans and other artificial
systems within the context of a present, continuous, ‘always-on’, interactive game-playing entity.
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Chapter 1

Introduction

Artificial Intelligence is concerned with creating an agent capable of rational thought. When applied to
games, the agent must be able to make decisions which would lead to fulfilling its goal (usually winning,
possibly against an opponent). Academic interest for Artificial General Intelligence has spread across Game
AI research during the last years, and researchers are trying to push the boundaries of AI by bringing forth
new methods, as well as new testbeds and complex challenges, to obtain an agent capable of achieving
high-level play in any given game. Examples of such work in general domains include the Arcade Learning
Environment (ALE), where Deep Reinforcement Learning techniques have been able to reach human level
of play (4), or the General Video Game AI (GVGAI1) Framework and Competition (5; 6). GVGAI proposes
a benchmark for planning, learning and procedural content generation that has attracted multiple authors
within the last few years.

Although tree-based search methods (and in particular, Monte Carlo Tree Search, or MCTS) have been,
in most cases, proclaimed winners of different GVGAI game-playing competition tracks (5) and have been
generally the preferred method for search-based planning in game-playing research, approaches based on
evolutionary algorithms, and in particular Rolling Horizon Evolutionary Algorithms (RHEA), are an excel-
lent alternative to tree search for real-time control in games. First introduced by Perez et al. (7), RHEA
evolves a sequence of actions to play in the game over several generations, using genetic operators to com-
bine, modify and discard solutions during its allocated thinking time, at every game step, in order to obtain
the best possible solution. The first action of the best sequence found is played in the game, and planning
resumes in the next game step. Its name stems from the fact that it keeps a constant sequence length, but
at each game tick, as the game progresses, RHEA can see one step further into the future, thus “rolling”
the horizon line forward. Previous to the work presented in this thesis, this algorithm was only explored in
limited settings and environments, and in a yet very simple form.

This thesis goes beyond previous research on RHEA to bring together several old and novel modifica-
tions, as well as extracting several control parameters, to create a highly-customisable algorithm able to per-
form well in a large selection of games. We look into different parameter settings and present experiments
with variations of the algorithm, discussing the most interesting results obtained. Different experiments
look at in-depth analysis of the algorithm’s decision-making process, as well as at automatically finding
good parameter settings on a wide range of games. The main domain in which we test the algorithm is Gen-
eral Video Game Playing (GVGP) (8), and, in particular, the General Video Game AI framework (9; 10),
working with a subset of games which includes varied features to represent a wide array of challenges.
Later automatic optimisation work is mainly motivated by the fact that it is hardly possible that the same
parameter setting would work equally well for all of the assorted games of the GVGAI corpus: these games
can vary across many dimensions, such as their level of stochasticity, average duration of a game, presence
or absence of Non-Player Characters, etc. Therefore, one algorithm configuration cannot be expected to
perform highly across all games. Benchmarking and exploring various aspects tried in literature previously
in a consistent experimental setup is essential to identify which solution works where and the advantages
each method brings, to combine them for efficient evolution and exploration of the solution search space.

Lastly, with the intent of exploring the potential of the method beyond the simple games of GVGAI,
RHEA is applied in several external domains: Pommerman (11), Tribes (12) and TAG (13). An ample
discussion on other novel work that opens up new research pathways is included at the end of the doc-
ument, together with a summary of results and a statement of the new state-of-the-art obtained through
the completion of this thesis. The impact of the research presented here is already evident within the re-
search community, with more and more works adopting RHEA as the algorithm of choice, and testing its
performance in different environments. Duarte et al. summarise stand-out learning and planning methods

1www.gvgai.net
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for game-playing in a recent survey (14), giving RHEA a well-deserved highlight as a promising new and
upcoming contender to MCTS-based algorithms.

1.1 Contributions
The contributions in this thesis can be summarised as follows:

• Extensive literature on the Rolling Horizon Evolutionary Algorithm, its various modifications and
environments it has been tested in, as well as other related concepts is presented in Chapter 2 and
throughout the thesis in key chapters. This serves as an easy point of reference for future research in
the area, to quickly find relevant work and ideas already explored, or to be explored further. Addi-
tionally, some basic literature on Monte Carlo Tree Search, its theoretical concepts and details on its
implementation are described as well, together with background information on the General Video
Game Playing domain used as the main context for experiments included in this thesis. Furthermore,
literature on other topics touched on in the thesis (such as automatic optimisation or diversity within
evolutionary algorithms) is included.

• The game set first used in (15), then in all subsequent experiments presented in this thesis (with
few exceptions) combines a diverse set of challenges for artificial game-players, including various
objects for the players to interact with in different ways, different mechanics and control schemes,
different winning and losing conditions and a variety of levels with different properties and gimmicks
associated. The difficulty of the challenges and the impact of a game’s stochasticity varies across
games as well, as highlighted later in the results. This set of games is further analysed in detail in term
of unique or challenging game features, which encourages more thorough future research in similar
environments, going beyond win/loss metrics and looking further into environment characteristics
that lead to interesting insights or particular behaviours. All games used in the thesis are described
in the appendices as well for easier comprehension of the true variety tested here. The following
research question is answered through this contribution:

Research Question 1 What is a varied set of environments appropriate for testing general video
game-playing algorithms in?

• This thesis formalises the Rolling Horizon Evolutionary Algorithm first introduced in (7), dis-
cussing the many aspects the algorithm deals with, from the perspectives of evolutionary algorithms,
as well as general game playing. Many modifications and parameters are brought together, including
those previously explored in literature, as well as new ones. This aims to serve as an easy introduc-
tion and starting point for anyone unfamiliar with the algorithm, to understand its basic workings; but
also as a comprehensive collection of possible enhancements tested so far, with recommendations for
particular applications within the experiments. Researchers needing particular behaviours or perfor-
mance in their environments, or looking for modifications to apply to different algorithms, could use
this resource as a handy development guide. The following research question is answered through
this contribution:

Research Question 2 What parameters can be extracted from a Rolling Horizon Evolutionary Al-
gorithm, and what modifications can be integrated into the algorithm for varied behaviour?

• Further, the various parameters and modifications in the algorithm are studied in a series of exper-
iments using the same common setting, in isolation (to perform a fair analysis of particular benefits
brought by individual enhancements), and in combination (to assess which parameters work well
together, or where there might be issues in synergy; both of these situations were identified in the ex-
periments and highlighted appropriately). Starting from simple tests regarding the benefits of shorter
or longer lookaheads (for exploring more of the level space, at the expense of less iterations and
therefore less accurate information; or the opposite), more or less sequences of actions evolved at
a time (for exploring more of the search space, at the expense of less iterations and less accurate
information; or the opposite), to more complex population initialisation and management techniques
or combinations with other algorithms. These experiments serve as a point of reference for the ben-
efits and drawbacks of each modification, and for details on the exploration and analysis of RHEA’s
parameter space. The following research question is answered through this contribution:

Research Question 3 What is the effect of adjusting the values of the parameters and combining
modifications on the performance of the Rolling Horizon Evolutionary Algorithm?
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• Naturally, a more in-depth analysis into the algorithm’s decision-making process follows. The thesis
presents first a tool, VERTIGØ, which facilitates the analysis process live, while playing the game,
with an easy-to-use and complete interface, allowing the user to select the game and level to play
out of the large GVGAI collection, change the algorithm’s parameters and visualise the thinking pro-
cess with heatmaps and a series of customisable plots; all detailed data can also be saved for further
post-processing. These types of visualisations can lead to interesting remarks about an algorithm’s
behaviour, which is studied further in experiments on dynamically adjusting the individual length,
according to the density of rewards observed during the game (to prioritise exploration of the levels
versus accurate statistics at the correct moments in time). All of the features extracted and readily
available for post-processing are also employed in a second study, which uses these decision-making
features to predict an algorithm’s overall expected performance in the game with great success; this
suggests changing the behaviour of the agent to promote certain trends in its decision-making pro-
cess could lead to a boost in performance, making tools such as VERTIGØ key in not only better
understanding the inner-workings of algorithms, but also in improving them. The following research
question is answered through this contribution:

Research Question 4 What insights can be gained from deeper analysis into the algorithm’s decision-
making process?

• Given the large set of parameters that resulted after the experiments presented, which added more and
more modifications to the algorithm, it becomes infeasible to choose correct configurations manually
in general, as well as for specific problems. Thus another topic tackled in this thesis is that of auto-
matic optimisation. Experiments are presented exploring these concepts first offline, taking several
days to learn good algorithm configurations for each of the 20 GVGAI games tested. This work was
later extended to work online instead, with the agent adjusting its parameters while also searching for
good action sequences during the game. These approaches are not only efficient at finding parameter
settings that work well (and often, better) in many games, but they also offer further insights into the
algorithm’s parameter space, such as which values for parameters are preferable, which values could
be better explored in a better-tailored search space, or even highlight particular synergies between
parameters that cannot be easily identified through manual tuning or human intuition. The following
research question is answered through this contribution:

Research Question 5 How can the large parameter space of the Rolling Horizon Evolutionary Al-
gorithm be searched effectively for a good configuration of parameters?

• Moreover, the thesis includes towards the end some in-depth discussions of novel work which opens
several exciting new research pathways. This refers to testing new representations within RHEA,
new environments for the algorithm altogether which better reflect real-world circumstances, as well
as building a whole artificial entity framework around the algorithm to allow it to interact with our
world better, learn from human players and even share its experiences with other artificial entities,
such as generative systems, for an exciting create-play-feedback-improve creation loop. The follow-
ing research question is answered through this contribution:

Research Question 6 What research directions into Rolling Horizon Evolutionary Algorithms are
opened up and encouraged by novel work?

• Last but not least, all experiments presented in the thesis include detailed results through tables,
figures and external links to software, data or extended results. The thesis ends with a summary
of the current state-of-the-art in Rolling Horizon Evolutionary Algorithms, as another easy point
of reference for researchers interested in the domain. All experiments are grounded in past work
in the area of general video game playing and include direct comparisons to Monte Carlo Tree
Search, the previous state-of-the-art in the domain and favourite across many environments. The
thesis compares not only performance of these algorithms, but also their behaviour and particular
differences in thinking process, with the aim of shading some light into their distinctions, similarities,
and best-case applications. Several variations of the Rolling Horizon Evolutionary Algorithm are
shown to outperform MCTS, and we hope to see RHEA as the algorithm of choice much more often
due to its superior performance especially in complex sparse reward environments, its simplicity and
high adaptability. The following research question is answered through this contribution:

Research Question 7 What is the new state-of-the-art in Rolling Horizon Evolutionary Algorithms,
and how does it compare to the previous state-of-the-art approaches based on Monte Carlo Tree
Search?
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1.2 Definitions
This section defines terms and concepts used throughout the thesis.

Definition 1.1 A game is an environment in which several objects (or sprites, in 2-dimensional games)
interact. One or more of these objects are controlled by a player. The end point of the interactions are
determined through end/termination conditions, which also define if the player has won or lost the game.
Players may earn some points or score in the game, which usually indicate how well the player is doing
and what their progress is towards the game’s winning condition. Stochastic games contain some elements
of chance/randomness (e.g. random behaviour of a Non-Player Character), while deterministic games do
not (an action applied repeatedly at the same moment in time leads to the exact same outcome). Most
games used in this thesis are also grid-based: the level is split into a grid of a particular size, with game
objects, including the one controlled by the player, usually can only move one grid cell at a time, to the left,
right, up or down. Most games used in this thesis are real-time games, meaning the decision-making time
is restricted so that the game runs without any apparent pauses for the user; this is set to 40ms per decision
or game frame (as set by the General Video Game AI framework in 2012), which is the equivalent of a
game running at 25 frames per second. Modern games (2021) are often required to run at least 60 frames
per second, which reduce the decision-making time even further, yet we choose the 40ms limit to ensure
compatibility with different machines and fair comparison to previous results in the domain. General game
playing refers to being able to play multiple games, often without any prior knowledge of what the game is,
how it works or what good strategies there are.

Definition 1.2 A level is a particular configuration of objects possible within the game. All levels for the
games used in this thesis include one and only one avatar, which the players control in order to interact
with the game’s environment.

Definition 1.3 A game state describes a moment in time, including e.g. current positions of objects in the
level and properties of the avatar.

Definition 1.4 A terminal game state is a game state in which the winning or losing termination condition
has been triggered, and the player has won or lost the game.

Definition 1.5 A game tick/step represents how many repetitions of a game’s loop/cycle have been executed
so far, or how many time units have passed in the game world.

Definition 1.6 An action is one way through which a player can interact with the game’s environment.
Actions in GVGAI almost always affect the player’s avatar only (e.g. move, jump).

Definition 1.7 A reward is a numerical indication of progress in a game. In the context of this thesis, the
rewards always (unless specified) refer to the in-game score obtained by a player.

Definition 1.8 An agent/player/controller is the actor in the environment, or an algorithm which decides,
at every game tick, what action should be applied in the game.

Definition 1.9 A policy is a probability distribution over the actions possible in the game (summing up to
1.0). Choosing an action according to a policy means choosing the action with the highest probability.

Definition 1.10 A heuristic/value function is a function able to assign a numerical value to a game state,
attending to its current properties.

Definition 1.11 A forward model (FM) is a function which takes a game state and an action as input, and
returns the resulting game state after applying the action. Conceptually, this is used to simulate the effect
of actions in the game (without actually playing them) and the forward model mimics the game engine
(although potentially inaccurate, using a different random seed in stochastic games).

Definition 1.12 A rollout is repeating these steps L times: 1) choose an action possible in the current game
state, 2) use the forward model to advance the game state with the chosen action. L is referred to as the
length of the rollout.

Definition 1.13 Lookahead takes a numerical value that represents how far into the future an agent can
see (i.e. the maximum rollout length).

Definition 1.14 A parameter is a numerical, categorical or toggle variable which controls some part of an
algorithm (e.g. rollout length).

24



Definition 1.15 Optimisation/tuning is find the best/optimal parameters, i.e. those that allow the algorithm
to perform to the best of its abilities (e.g. highest win rate). Automatic optimisation/tuning means using
an algorithm to perform this task, instead of a human hand-picking the parameters. Algorithms that adjust
their own parameters are referred to as adaptive.

Definition 1.16 An individual is a potential solution to a problem.

Definition 1.17 The phenotype represents the observable traits of the individual. In this context, this is the
behaviour of the player-controlled avatar in the game world.

Definition 1.18 The genotype/genome/representation is the encoding of the phenotype into data structures
easier to process. In this context, the genotype of an individual is a sequence of actions to execute in the
game.

Definition 1.19 A population is a collection of individuals.

Definition 1.20 Fitness is a value assigned to an individual, indicating how good the individual is (the
higher the fitness, the better the individual). This is calculated through a fitness function.

Definition 1.21 Evolution is the process of iteratively improving upon an initial population over several
generations, by combining and changing the individuals via genetic operators and discarding the less fit
solutions, in order to increase the fitness of the population.

Definition 1.22 An iteration is the part of an algorithm that is repeated multiple times. In evolutionary
algorithms, this is equivalent to moving to the next generation once.

Definition 1.23 A decision budget controls how many iterations an algorithm is able to perform.

1.3 Associated Publications
Most of the work detailed in this thesis has been presented in national and international scholarly publica-
tions, some of which already highly cited and discussed within the community, making these the largest
contribution of my PhD (journal publications highlighted with a * symbol; books highlighted with a ˆ
symbol; all others are conference publications). The papers included in the thesis are accompanied by
statements of personal contributions to those works in bold.

Core first-author publications
R. D. Gaina, J. Liu, S. M. Lucas, and D. Perez-Liebana, “Analysis of Vanilla Rolling Horizon Evolution
Parameters in General Video Game Playing,” in Springer Lecture Notes in Computer Science, Applications
of Evolutionary Computation, EvoApplications, no. 10199, 2017, pp. 418–434
[Chapter 4, Section 4.1] Contributions: implementation, experiments, writing most of the paper.
Second author plotted results and helped write the experiments section. Third and fourth authors
participated in discussions and writing the paper.

R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Population Seeding Techniques for Rolling Horizon
Evolution in General Video Game Playing,” in Proceedings of the Congress on Evolutionary Computation,
June 2017, pp. 1956–1963
[Chapter 4, Section 4.2] Contributions: implementation, experiments, writing the paper. Second and
third authors participated in discussions and polishing the paper.

——, “Rolling Horizon Evolution Enhancements in General Video Game Playing,” in Proceedings of IEEE
Conference on Computational Intelligence and Games, Aug 2017, pp. 88–95
[Chapter 4, Section 4.3] Contributions: implementation, experiments, writing the paper. Second and
third authors participated in discussions.

——, “VERTIGO: Visualisation of Rolling Horizon Evolutionary Algorithms in GVGAI,” in The 14th
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 2018, pp. 265–267
[Chapter 5, Section 5.1] Contributions: implementation, experiments, writing the paper. Second and
third authors participated in discussions.
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——, “Tackling Sparse Rewards in Real-Time Games with Statistical Forward Planning Methods,” in AAAI
Conference on Artificial Intelligence (AAAI-19), vol. 33, 2019, pp. 1691–1698
[Chapter 5, Section 5.2] Contributions: implementation, experiments, writing the paper. Second and
third authors participated in discussions and polishing the paper.

——, “General Win Prediction from Agent Experience,” in Proc. of the IEEE Conference on Computational
Intelligence and Games (CIG), Aug 2018, pp. 1–8
[Chapter 5, Section 5.3] Contributions: implementation, experiments, writing the paper. Second and
third authors participated in discussions and polishing the paper.

* R. D. Gaina, S. Devlin, S. M. Lucas, and D. Perez-Liebana, “Rolling Horizon Evolutionary Algorithms
for General Video Game Playing,” IEEE Transactions on Games, 2021
[Chapter 6, Section 6.1] Contributions: implementation, experiments, writing the paper. Second and
third authors participated in discussions and polishing the paper.

R. D. Gaina, C. F. Sironi, M. H. Winands, D. Perez-Liebana, and S. M. Lucas, “Self-Adaptive Rolling
Horizon Evolutionary Algorithms for General Video Game Playing,” in IEEE Conference on Games (CoG),
2020, pp. 367–374
[Chapter 6, Section 6.2] Contributions: RHEA implementation, setting direction, experiments, writ-
ing the RHEA, experiments, results and conclusions sections of the paper. Second author integrate
RHEA with online tuning and wrote the introduction, background and tuning approaches sections of
the paper. The rest of the authors participated in discussions and polishing the paper.

R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. Perez-Liebana, “TAG: a Tabletop Games Frame-
work,” in Proceedings of the AIIDE workshop on Experimental AI in Games, 2020
R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. Perez-Liebana, “Design and Implementation of
TAG: a Tabletop Games Framework,” arXiv preprint arXiv:2009.12065, 2020
[Chapter 7, Section 7.3] Contributions: main TAG developer, games analysis, writing most of the
paper. Third author ran agent experiments and wrote that results section in the paper. All authors
participated in developing the framework and polishing the paper.

R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Project Thyia: A Forever Gameplayer,” in IEEE Confer-
ence on Games (COG), 2019, pp. 1–8
[Chapter 8, Section 8.1] Contributions: wrote most of the paper. Second author wrote the “Planning
to learn” section. The third author participated in discussions, shaping and polishing the paper.

Other non-first-author publications included in this thesis
D. Perez-Liebana, R. D. Gaina, O. Drageset, E. Ilhan, M. Balla, and S. M. Lucas, “Analysis of Statistical
Forward Planning Methods in Pommerman,” in Proceedings of the Artificial intelligence and Interactive
Digital Entertainment (AIIDE), vol. 15, no. 1, 2019, pp. 66–72
[Chapter 7, Section 7.1] Contributions: implemented large parts of the framework, wrote the results
section and participated in discussions, shaping and polishing the paper. First author coordinated the
project, ran experiments and wrote most of the paper. The other authors participated in developing
the framework, discussions and polishing the paper.

D. Perez-Liebana, Y.-J. Hsu, S. Emmanouilidis, B. Khaleque, and R. D. Gaina, “Tribes: A New Turn-Based
Strategy Game for AI,” in Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, vol. 16, no. 1, 2020, pp. 252–258
[Chapter 7, Section 7.2] Contributions: developed the GUI for the framework, developed the RHEA
agent used in experiments, wrote the literature review section in the paper and participated in the
polishing of the paper. The other authors developed the framework and wrote the rest of the paper.

D. Perez-Liebana, M. S. Alam, and R. D. Gaina, “Rolling Horizon NEAT for General Video Game Play-
ing,” in IEEE Conference on Games (CoG), 2020, pp. 375–382
[Chapter 8, Section 8.2] Contributions: participated in discussions. Helped with writing, shaping and
polishing of the paper.

D. Perez-Liebana, M. Stephenson, R. D. Gaina, J. Renz, and S. M. Lucas, “Introducing Real World Physics
and Macro-Actions to General Video Game AI,” in Proceedings of IEEE Conference on Computational
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Intelligence and Games, Aug 2017, pp. 248–255
[Chapter 8, Section 8.3] Contributions: participated in discussions during framework and games
development, and in shaping and polishing of the paper. First author led the project and ran experi-
ments. Second author developed the framework additions and games. The other authors participated
in discussions and polishing of the paper.

Other first-author publications not included in this thesis
R. D. Gaina, D. Perez-Liebana, and S. M. Lucas, “General Video Game for 2 Players: Framework and Com-
petition,” in Proc. of the IEEE Computer Science and Electronic Engineering Conference (CEEC), 2016,
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* R. D. Gaina, A. Couëtoux, D. J. Soemers, M. H. Winands, T. Vodopivec, F. Kirchgessner, J. Liu, S. M.
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in 2017 9th Computer Science and Electronic Engineering (CEEC), Sept 2017, pp. 195–200
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in IEEE Conference on Games (COG), 2019, pp. 1–4
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O. Drageset, R. D. Gaina, D. Perez-Liebana, and M. H. Winands, “Optimising Level Generators for General
Video Game AI,” in IEEE Conference on Games (COG), 2019, pp. 1–8
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1.4 Thesis Structure
The rest of this thesis is structured as follows:

• Chapter 2 reviews literature related to the work presented in this thesis, introduces the domain and
game set used, and includes background on Monte Carlo Tree Search, as the main point for compar-
ison throughout experiments.

• Chapter 3 gives an overview of Rolling Horizon Evolutionary Algorithms, explaining conceptual and
implementation details. It includes detailed descriptions on all modifications tested within this thesis
and resultant parameters.

• Chapter 4 presents experimental work studying several basic parameters of the algorithm (population
size and individual length), as well as testing several enhancements previously described in literature
within a common setting (the same 20 GVGAI game), in isolation and in combination.

• Chapter 5 presents experimental work looking deeper into the inner-workings of the algorithm through
visual analysis and the VERTIGØ tool built, resulting insights developed into larger pieces of research
as well as the use of features describing the agent’s thinking process to predict performance.

• Chapter 6 addresses the problem of the large parameter space built through this work via automatic
optimisation, both offline and online.

• Chapter 7 reviews applications of the algorithm outside of the GVGAI domain and the adaptations
needed for specific games: Pommerman (partial-observable Bomberman), Tribes (turn-based strategy
game) and tabletop games (within the TAG framework).

• Chapter 8 describes works opening up new pathways of research for Rolling Horizon Evolutionary
Algorithms.

• Chapter 9 concludes the thesis with a summary of the results obtained and comments on possible
future extensions.

• Finally, Appendices A,B,C include full descriptions of the games used in the different experiments in
this thesis.
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Chapter 2

Background

2.1 General Video Game Playing

It is important to first give an overview of the larger problem the algorithms developed in this thesis are
trying to solve, General Video Game Playing (GGP). The popularity of this domain has increased since M.
Genesereth et al. (39) organised the first GGP competition allowing participants to submit game agents to
play in a diverse collection of board games. Sharma et al. (40) motivates research in this area by bringing
to attention how agents trained without prior knowledge of the game are excelling in specific games, such
as TD-Gammon in Backgammon (41) and Blondie24 in Checkers (42); but they cannot be successfully
applied in other scenarios or environments. Furthermore, they also suggest that there are several techniques
that do work in a general context, as long as there is a standardised way of describing the games and the
agent’s interaction, otherwise requiring minor modifications.

The problem is further expanded to video games in General Video Game Playing (GVGP (8)), which
provide the agents with new and possibly more complex challenges due to a higher and continuous, in
practice, rate of actions. One of the first frameworks to allow testing of such general agents was the Arcade
Learning Environment (ALE) (43), later used as benchmark for applying Deep Q-Learning to achieve
human level of play on the Atari 2600 collection (4). The way the world was presented to the agents in
this framework was via screen capture; they would return an action to be performed and the next game state
would be processed by the system.

Moreover, (44) explores creating agents for ALE, looking at two different methods of reinforcement
learning and search-based techniques, both of which return satisfactory results when trained on only four
games, but tested on 50 randomly selected new games. Their training and testing approach is similar
to that used in this work. They look at two different techniques that could be implemented for ALE,
using reinforcement learning and search-based algorithms. They were trained on 4 games and tested on 50
randomly selected new games, showing promising results.

Within the larger picture of GGP lies the General Video Game AI Competition (GVGAI) (5; 6), which
offers a large corpus of games described in a plain text language, making it easy to run general AI agents
in several different environments and analyse their performance. The competition has already completed
three editions of its single-player track (starting in 2014), with two additional tracks running in 2016 for
two-player games (27), level generation (45) and rule generation (46). Therefore, it is attracting a large
interest on an international scale, with close to a hundred participants every year across its different tracks.

Considering the variety of games the competition offers, studying methods of identifying which type of
game is currently being played may be a key to a successful solution to the GVGP problem. There are a few
works which attempt to classify or cluster the games. One classification was generated by Mark Nelson (47)
in his analysis of the vanilla Monte Carlo Tree Search algorithm in 62 of the games in the framework, sorted
using the win rate of MCTS as a simple criterion. A clustering approach of 49 games by Bontrager et al. (1)
separated the games into groups based on their similarity in terms of difficulty to a large set of GVGAI
entries. These two studies are used in my research to determine subsets of games for testing algorithms.
Additionally, they lay the groundwork for more in-depth studies which would lead to hyper-heuristics being
explored to intelligently manage algorithm usage.

This competition is becoming a popular way of benchmarking AI algorithms such as enforced hill
climbing (48), algorithms employing advanced path-finding or using the knowledge gained during the game
in interesting ways (49; 50), or dominant Monte Carlo Tree Search techniques (51). All of the authors appear
to agree on the complexity of the problem proposed, as well as its importance, going beyond the realm of
video games towards that of AGI.

Monte Carlo Tree Search (MCTS) has proven to be the dominating technique out of the sample ones
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provided in the GVGAI competition, with numerous participants using it as a basis for their entries before
adding various enhancements on top of its vanilla form. Most winners of the first competition employ
MCTS-based methods, including the winner in 2014, Adrien Couëtoux (6), who used an Open Loop ap-
proach.

2.1.1 General Video Game AI Framework
The framework used for all experiments discussed in this thesis is the General Video Game AI (GVGAI)
framework (10). GVGAI is a framework widely used in research (9) which features a corpus of over 100
single-player games and 60 two-player games. These are fairly small games, each focusing on specific
mechanics or skills the players should be able to demonstrate, including clones of classic arcade games
such as Space Invaders, puzzle games like Sokoban, adventure games like Zelda or game-theory problems
such as Iterative Prisoners Dilemma. All games are real-time and require players to make decisions in only
40ms at every game tick, although not all games explicitly reward or require fast reactions; in fact, some of
the best game-playing approaches add up the time in the beginning of the game to run Breadth-First Search
in puzzle games in order to find an accurate solution (9). However, given the large variety of games (many
of which are stochastic and difficult to predict accurately), scoring systems and termination conditions,
all unknown to the players, highly adaptive general methods are needed to tackle the diverse challenges
proposed.

GVGAI includes several different tracks which tackle different problems: single-player planning (5),
two-player planning (28) and single-player learning tracks focus on finding general game-playing AI agents
which would be capable of planning (with internal models of the world) or learning across all the games in
the framework. More recently, level generation (45) (creating levels for any game) and rule generation (46)
(creating rules for any given level) challenges were introduced as well, to push the limits of general game
Artificial Intelligence.

For the purpose of the experiments described in this thesis, we will focus on the single-player planning
track, although the work could easily be expanded to include two-player games.

2.1.2 Game set
20 single-player games, with 5 levels each, were selected out of the larger GVGAI corpus using two dif-
ferent classifications present in literature in order to balance the game set and analyse performance on an
assorted subset of games. The first classification was that generated by Mark Nelson (47) in his analysis
of the vanilla Monte Carlo Tree Search algorithm in 62 of the games in the framework, sorted using the
win rate of MCTS as a simple criterion. The second classification considered was the clustering of 49
games by Bontrager et al. (1), which separated the games into groups based on their similarity in terms of
game features. Combining these two lists and uniformly sampling from both provided a diverse subset, as
described in Table 2.1. The resultant game set is varied in features and difficulty (according to the perfor-
mance of various GVGAI competition entries), but it is also important to highlight that half of the games
are deterministic and half are stochastic, introducing additional noise to the agent decision-making process.

The game table includes additional information about each game. They showcase varying reward struc-
tures, such as games with no rewards (with the possibility of gaining points on win/lose conditions only),
games with dense rewards (multiple interactions with the environment result in a score change) or games
with discontinuous rewards (a longer sequence of actions is required to obtain the reward). Four different
types of winning conditions are featured, in which the player has to kill certain game objects (Kill), reach
an exit point (Exit), wait for a timer to run out (Timeout) or complete a certain more precise sequence of
actions (Puzzle, such as move a box onto a specific point). Three types of losing conditions are included,
which result in the player losing if they run out of time (Timeout; note that all games include a default
timeout of 2000 game ticks, at which point the game ends and the player loses if they did not complete any
of the winning conditions), die (Death) or fail to kill specific game objects (No-kill).

We note that most experiments in this thesis analyse the win rate of the AI players, and not the game
score obtained. While the score is important in some games (a higher score could be better if losing), the
variety of reward systems make it an unreliable metric, especially when this is deceptive (52). As such, in
this study of AI game players, we are solely interested in the ability to win the game (or solve the problem),
regardless of score obtained.

Additionally, the 5 levels included with each game vary in size (Large - L, Medium - M or Small - S)
and density of interactive tiles (that is, tiles which produce some sort of effect when the player interacts
with it, such as blocking the player’s path, moving or getting destroyed). Some games include Non-Player
Character (NPCs) that might either help the player (F), hurt the player (E) or have no direct influence on the
player’s win/lose condition or score (N) through their behaviour. The player may need to collect resources
or pay particular attention to their avatar’s hitpoints (HP). Finally, games vary in the actions available to
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Table 2.1: Game set including feature analysis. The last 3 columns show clusters as depicted in previous
works; games with the same value are denoted as part of the same cluster. As (1) do not include all games
we use in their study, column (2) shows the game indexes between which the missing games are placed by
Mark Nelson (lower-higher); (3) shows more recent work clustering all GVGAI games.

Idx Game Stoch. Rewards Win Lose Levels NPCs Res. Actions (1) (2) (3)
0 Dig Dug x D Puzzle/Kill Timeout L/Dense E Move+Shoot 4 5
1 Lemmings D Exit/Puzzle Death L/Dense N Move+Shoot 4 5
2 Roguelike x D Exit Death L/Dense E x Move+Shoot 4 4
3 Chopper x D+Disq Kill No-kill L/Dense E x Move+Shoot g4-g1 2
4 Crossfire x N Exit Death M/Dense E Move 2 4
5 Chase D Kill Death M/Sparse F+E Move 2 4
6 Camel Race N Exit Timeout L/Sparse E Move 2 3
7 Escape N Exit/Puzzle Death M/Dense Move 2 3
8 Hungry Birds Disq Exit Timeout M/Sparse HP Move g7-g10 3
9 Bait N Puzzle/Exit Timeout S/Sparse x Move 4 4

10 Wait for Breakfast N Puzzle Timeout M/Dense N Move 2 3
11 Survive Zombies x D Timeout Death M/Dense F+E Move 3 4
12 Modality N Puzzle Timeout S/Dense Move 3 4
13 Missile Command D+Disq Kill No-kill M/Sparse E Move+Shoot 3 2
14 Plaque Attack D Kill No-kill L/Dense E Move+Shoot 3 2
15 Seaquest x D+Disq Timeout Death M/Dense F+E x Move+Shoot 3 2
16 Infection x D Kill Timeout M/Dense F+E Move+Shoot 1 1
17 Aliens x D Kill Death M/Dense E LR+Shoot 1 1
18 Butterflies x D Kill Timeout M/Dense F Move 1 2
19 Intersection x D+Disq Timeout Death L/Dense E HP Move g18-g17 1

the players (Move includes movement in all 4 directions, up, down, left and right; LR includes only left and
right movement; a special Shoot action might be available in some games, with different effects). If the
action chosen by the player at any game step is illegal or cannot reasonably be played (e.g. walking into a
wall), it is automatically treated as “do nothing” by the game engine.

Full descriptions of the games are included in Appendix A. When discussing parameter choices, we
will refer to games as similar based on the features described in Table 2.1, or the clustering identified from
previous works.

2.1.3 Sparse reward systems

A distinct problem is that of the variety of reward landscapes in games and how most current general
methods are not equipped to handle this. Anderson et al. (52) highlight deceptive reward systems in games
(i.e. by introducing score gains which guide the AI player away from winning the game), using agents from
the General Video Game AI Competition (GVGAI) to show that AI game players can be easily tricked into
not finding the optimal solution. Companez et al. (53) look at enhancements for Monte Carlo Tree Search in
Tic-Tac-Toe variations meant to overcome such deceptive issues, highlighting a particular situation where
the agent should be able to self-sacrifice in the short run in order to obtain a larger gain in the long run.

The variety of games that general algorithms are expected to achieve a high performance on is noted by
Horn et al. in (54). They look at the 2D grid-physics games in the GVGAI Framework and identify the dif-
ferent strengths and weaknesses of Evolutionary Algorithms as opposed to methods based on Tree Search.
The authors propose a game difficulty estimation scheme based on several observable game characteristics,
which could be used as a guideline to predict agent performance depending on the game type. Some of the
metrics they extracted tie in to the fitness values identified by the algorithms, such as puzzle elements or
enemy (possibly random) Non-Player Characters (NPC) which may negatively impact state value estima-
tion. They also observe the lower performance of most algorithms on sparse reward games, but their study
is limited in terms of overcoming the issues highlighted.

Different authors use macro actions to explore the space in physics based games, where one single
action may not have much effect on the environment (55; 26). In both works, simple macro actions are
implemented which repeat single actions a number of times M , further increasing the computation budget
as well, due to the action to be played repeatedly being planned for M time ticks later. Simply repeating
the same actionM times (similar to the concept of frame-skipping in Reinforcement Learning) proved very
effective in the Physical Travelling Salesman Problem (55), but it did not work in all physics based games
tested in the GVGAI Framework (26) due to the coarseness resultant, indicating that a dynamic approach
may be better.

One approach to deal with sparse reward landscapes specifically is presented in (28). Vodopivec de-
scribes the use of dynamic rollout increase, proportional to the iteration number, and weighted rollouts in
his Monte Carlo Tree Search (MCTS) based entry in the 2016 GVGAI Two-Player track. The purpose of
this addition is specified as combining quick reaction to immediate threats with better exploration of areas
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farther away, if time budget allows. This is an interesting general approach, but computation time is po-
tentially wasted if there are no close rewards to guide the search before rollouts become long enough to
retrieve interesting information.

Another approach (56) is to combine Deep and Reinforcement Learning on Atari games to learn, from
the reward landscape, a bonus function that modifies the UCT policy on MCTS. The authors showed that
it is possible to learn from raw perception and improve the performance of MCTS agents in some of these
games, by using policy-gradient for reward design.

Finally, a complementary set of methods, often referred to as intrinsic motivation, encourage exploration
in ways that ignore rewards and focus instead on properties of the state space (or state-action space). The
aim is to encourage the agent to explore novel or less visited parts of the state space, or areas that maximise
the agent’s affordances (57). For non-trivial games, most possible states are never visited due to the vast
state space, so statistical feature-based approximations can be used to estimate the novelty of a state (58).
The rollout length adaptation method described here may complement intrinsic motivation methods, but
this has not been investigated yet.

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is one of the best methods in GVGP at present, and the method of choice
for many works as summarised in this section. As a result, we use MCTS for validation in the studies
presented in this thesis, to compare against and measure how performances appearing good actually fit
within the larger problem, grounding results in the wider context.

There is a wide literature on MCTS, as reviewed in the survey by Browne et al. (59). Its application
in General Video Game Playing is varied as well. One of the first usages of MCTS in this context was
CadiaPlayer developed in 2007 (60). Although this was a rather basic implementation of the algorithm, it
made use of a heuristic based on the history of events in the game in order to learn correct actions (61).
Its success in the GGP competition (winning both 2007 and 2008 editions) attracted the interest of other
researchers as well, enhancements to improve performance starting to be explored. Even though Finnsson
et al. (61) did not find a suitable combination of techniques which would result in better results in all games
instead of specific ones, the general strength of their algorithm did increase over the following few years
during further development.

Another general MCTS player is Ary (62), which employed transposition tables, Upper Confidence
Bound applied to Trees (UCT) and nested MCTS techniques. These improvements helped this algorithm
defeat CandiaPlayer and win GGP in 2009. While exploring different versions of their proposed algo-
rithm, Mehat and Cazenave (62) come to the same conclusion as Finnsson et al., where there is no clear
enhancement that does better than others in all the games.

Other approaches to this problem in GVGP include incorporating Answer Set Programming in MCTS in
Centurio by Möller et al. (63), using state and action patterns to generate domain knowledge by Sharma et
al. (64) and influence maps to better direct the search in games with a large search space, in which standard
MCTS would move almost randomly due to lack of rewards; an average performance increase is reported
by (51). In addition, Chu et al. (50) take the idea of knowledge-based fast-evolutionary MCTS (49) and
combine it with path-finding algorithms for a slight improvement over alternatives.

There have been several MCTS adaptations for multi-player turn-based games, using the Minimax tech-
nique, in which the levels of the tree alternate between the players and the algorithm assumes the opponent
tries to minimise the agent’s reward, while its goal is to maximise it. Research in the area attempts diverse
improvements with mixed results (65) (66).

Although MCTS has shown to be a top contender in this domain, Evolutionary Algorithms (EA) show
great promise at obtaining just as good, if not better, performance. Perez et al. (7) compare EA techniques
with tree search on the Physical Salesman Travelling Problem, and their results are satisfactory, encouraging
research in the area. In their work, the authors employ several techniques to improve the state evaluation
function, such as avoiding opposite actions, movement blocks and pheromone exploration.

It is important to notice that this work focuses on improving domain-agnostic algorithms on a variety
of different games. Other agents submitted to the GVGAI Competition (i.e. YOLOBOT (67), the winner
of several editions) obtain higher performance than the methods explored here, but also count on stronger
heuristics (mostly adapted to respond well to GVGAI games) and combine several algorithms (tree search,
A*, best first search, etc.). The focus of our work is to explore improvements in simpler, game-agnostic
algorithms, taking their vanilla form as baseline to analyse the effects of the proposed modifications.
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2.2.1 Implementation Details
At every game tick, MCTS works by iteratively building a game tree, in which nodes are represented by
game states and/or statistics (Q, the value of the node, and N , the number of times the node was visited),
and the nodes are connected by actions taken within the game. At every iteration, new nodes are added to
the tree and statistics are updated, through a series of 4 steps:

1. Selection: Navigate the tree from the root, until a node which is not yet fully expanded is found (new
actions that have not been tried yet can still be taken from that game state). During tree navigation,
at each node in the tree, choose a child according to the tree policy.

2. Expansion: Add a new child of the node reached during the selection step.

3. Simulation: Execute a Monte Carlo simulation starting from the newly added node (choose an action
available from the game state using a default policy, apply the action, and repeat the process L times
to reach a final game state).

4. Backpropagation: The final game state is evaluated with a heuristic h and this value is propagated
up the tree, updating Q and N statistics in all of the nodes visited during the iteration; Q will reflect
for each node the average of all values observed during iterations that visited the node.

After several iterations, a recommendation policy is used to select an action from the root to play in the
game, and the process repeats at the next game tick. There are several things to note about the algorithm:
1) it can be stopped after any number of iterations and return an approximation of a good action to play;
given infinite compute and several constraints, the algorithm was theoretically proven to converge to optimal
play (68); 2) depending on the tree policy used, the tree built most often grows asymmetrically, favouring
those branches where higher rewards are observed; 3) statistics become more accurate with more iterations;
statistics are also most accurate towards the root of the tree, while nodes further down in the tree see less
visits and are therefore less accurate.

The MCTS variant used in the work presented in this thesis uses an open loop modification, an idea
suggested by Perez et al. (69). It consists of not storing the game states in the nodes of the tree, but only the
corresponding statistics instead, while using a simulation model to recalculate game states at each iteration.
This technique has proven superior in stochastic games, where the randomness aspect leads to inaccurate
results in the closed loop MCTS.

Additionally, we specify the tree policy used as UCB1 (using an exploration constant C =
√

2 (70)
and rewards normalised in [0, 1] using dynamic bounds), the default policy used as random and the recom-
mendation policy used as the most visited child. The length of the MC rollouts varies, specified for each
experiment, together with any other modifications added.

2.2.2 State evaluation
The heuristic function h is always kept to a generic form, and the same for all algorithms tested, throughout
the experiments; this aims to maximise the game score, while favouring wins and discouraging losses, see
Equation 2.1 (s is the game state being evaluated and score is the game score normalised in (0, 1)).

h(s) =


1 win
0 lose
score otherwise

(2.1)

2.3 Rolling Horizon Evolutionary Algorithms
Evolutionary Algorithms (EAs) (71) provide a simple, robust and generally applicable approach for search-
ing a wide variety of spaces, and have been the subject of intensive research for more than five decades. In
terms of their application to Game AI, much of the effort has been focused on evolving game-playing AI
agents, or on evolving game content (such as level design) (72), game rules or game parameters. Recently,
it was shown that Evolutionary Algorithms could be applied as any-time and real-time decision-making
algorithms for use in Game-Playing AI, adopting a similar simulation-driven approach to Monte Carlo Tree
Search, while being simpler to implement and offering competitive performance (7). This was initially done
for one-player games, but was extended to 2-player games in the form of Rolling Horizon Co-Evolution
(73).

Among the techniques employed over the last years of the GVGAI Competition, one of the most promis-
ing is that of Rolling Horizon Evolutionary Algorithms (RHEA). These methods, rather than basing the
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search on game tree structures, use influences from biological sciences to evolve a population of individuals
until a suitable one, corresponding to a solution to the problem, is obtained. The way they are applied to the
domain of GVGP is by encoding sequences of in-game actions as individuals, using heuristics to analyse
the value of each sequence (69). The individuals are evaluated by simulating moves ahead using a forward
model. From the current state of the games, all actions (genes of the individual) are executed in order, until
a terminal state or the length of the individual is reached. The state reached at that point is then evaluated
with a heuristic function and the value assigned as the fitness of the individual. The most basic form this
algorithm can take is that of a Random Mutation Hill Climber (74), where the population size is only 1,
using the mutation operator as the only way to navigate through the search space.

Samothrakis et al. (75) compare two variations of the Rolling Horizon setting of EAs in a number of
continuous environments, including a Lunar Lander game. The first algorithm uses a covariance matrix,
while the second employs a value optimisation algorithm. The Rolling Horizon refers to evolving plans of
actions and, at each game step, executing the first action that appears to be the best at present, while starting
fresh and creating a new plan for the next move, sequentially increasing the ”horizon”. Their research
suggests EAs to be viable algorithms in general environments, and that a deeper exploration should be
performed with an emphasis on heuristic improvement.

Regarding two-player RHEA implementations for multi-player real-time games, Liu et al. suggest an
expansion of the single-player algorithm to two players (and possibly multiple others), by employing a
co-evolution model of one population for each different player and using the actions from both to simulate
possible future states and improve the action sequences (73). Their algorithm is tested on a two-player
Space Battle game and returns favourable results.

The first step in studying RHEA algorithms is, however, understanding the effect of the core parameters,
the population size and individual length.Not many studies have focused on the implications of these core
parameters, nor justified their choices or tuning algorithms, which, as a consequence, may include bias in
their results. N. Justesen et al. (76) used online evolution for action decision in Hero Academy, a game
in which each player counts on multiple units to move in a single turn, presenting a branching factor of a
million actions. In this study, groups of actions are evolved for a single turn, to be performed by up to 6
different units. With a fixed population of 100 individuals, the authors show that online evolution is able to
beat MCTS and other greedy methods.

Other authors do not necessarily highlight the reasoning behind their parameter choices either. Horn
et al. (54), for example, who depict interesting hybrids between RHEA and MCTS, appear to change
the configurations of their algorithms from one test to the next, which causes possible inconsistencies to
appear and the results reported may not be necessarily due to the technique used, but the variation in
parameters. This is one aspect my work wishes to improve, by keeping studies comparable and grounded
in incrementally complex experiments.

2.3.1 RHEA improvements
When it comes to improving upon the baseline algorithm, a good place to start is looking at the algorithm
structure and how evolution could be made more effective in the short computation time allowed by real-
time games. This could mean creating hybrids, algorithms that take advantage of the strengths of several
approaches and combine them for new interesting behaviour (54).

Several instances have been produced, with evolution being integrated into the simulation phase of
Monte Carlo Tree Search (49), as well as using an EA to tune MCTS parameters (77). Recent work attempts
to look at the problem the opposite way: incorporating trees into EAs or using a bandit approach, similar to
the selection step in MCTS, for guiding evolution (78).

RHEA and MCTS have been combined in different ways in the literature as well, in order to make use of
both of their strengths and mitigate their weaknesses at the same time, at the cost of increased computational
effort. Vasquez et al. (79) combine them in 2 variants: one which runs the algorithms alternatively at every
game tick to decide on the next action; and one which runs both at every game tick and chooses the action
leading to the best reported result. Both of these hybrids lead to better performance across several games.
Andreson et al. explore a similar concept at a larger scale, by building complex ensemble systems (80):
these run several algorithms at every game tick and use the outputs returned by all to come to a consensus
and play at a higher level than any of the individual parts. Baier et al. integrate evolutionary concepts into
an MCTS tree, which holds sets of actions into its nodes instead of single actions, the algorithm named
EMCTS (81; 82). Each action set includes one action per unit the player controls, applicable in multi-agent
games (where the player controls multiple units and must decide what each must do in a player’s turn). The
nodes in the tree are then connected by mutation operators, as the “actions” taken to navigate the tree. This
algorithm thus keeps a history of all action sets tried in a game tick, increasing the memory required for the
run. However, it is able to then make use of the entire history in selecting the next action set to mutate and
obtains great results in multi-agent games by considering entire turns for one player in the nodes of MCTS.
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The population initialisation is the one thing that all Evolutionary Algorithms have in common, regard-
less of any additional features or the actual evolutionary techniques used. There have been several attempts
at exploring this particular improvement. Kazimipour et al. (83) review different methods present in litera-
ture and categorise them according to various factors: randomness, compositionality and generality. They
identified several techniques which would work in a general environment; however, they suggest that these
methods are computationally expensive, therefore not translating well to real-time games, for example,
which is the domain my work focuses on.

In addition, Kim et al. (84) analyse the effects of initialising an EA population using an optimal solution
determined by a Temporal Difference Learning algorithm in the game Othello. This addition appears to lead
to a significant improvement in performance and future work in the area is encouraged.

The issue with initialising the population with pseudo-random numbers is raised by Maaranen et al.
(85), who instead propose a quasi-random sequence method meant to obtain more evenly distributed points
in a multi-individual population, in order to better explore the search space. This technique is applied
to a genetic algorithm and it is tested on 52 global optimisation problems. Their results are promising,
suggesting a higher level of performance over the traditional initialisation method.

Tobias Benecke goes one step further to analyse in-depth the impact of the initial population throughout
the evolutionary process, proposing several metrics that track the progress of the population from one
generation to the next, as well as measuring the end value of the initial population (86). This work aims
to better characterise the behaviour of the algorithm and inform future work in the area of population
initialisation.

2.3.2 RHEA hybrids

Perez et al. (69) look at the recommendation policy part of the algorithm and they keep a statistical tree
alongside the evolutionary process, in order to record statistics about the actions while evaluating indi-
viduals and select the action with the highest value averaged during the evolution. Thus they make use of
intermediate states and not only look at the final population obtained. This method is most effective in noisy
environments as an alternative to re-sampling, which would be more expensive. Furthermore, they keep the
tree from one game step to the next, by using the child selected at the end of the evolution as the new root
of the tree in the following step. Their promising results motivated the use of both of these methods in my
studies, by combining the stats tree with a shift buffer for the same effect. However, it is worth noting that
the authors add a pheromone-based heuristic to their algorithms, which may impact their findings.

A compelling and novel addition to evolutionary algorithms is that of multi-armed bandits applied as
a mutation operator to better balance between exploration and exploitation. There is extensive literature
on the multi-armed bandit problem (87) and various solutions to it. One possibility is using an Upper
Confidence Bound (UCB) method. Powley et al. (88) look at using UCB in Monte Carlo Tree Search as
both the tree policy and the simulation policy. When tested on three different problems, two card games
(“Dou Di Zhou” and “Hearts”) and a board game (“Lord of the Rings: The Confrontation”), its performance
is shown to consistently be at a high level.

A bandit-based mutation system was described in (78; 89). Liu et al. compare this mutation method
with the Random Mutation Hill Climber (RMHC) on two simple problems and their results suggest that
bandit-based mutation is especially effective in cases where individual evaluation is expensive, therefore
applicable to the problems described in this thesis.

Horn et al. (54) look at two different MCTS-RHEA hybrids. In the first method (EAroll), Monte Carlo
simulations are used at the end of the evaluation of one RHEA individual with a limited depth, the resulting
value being averaged with the genome evaluation to determine its fitness. The second variant (EAaltActions)
uses both RHEA and MCTS to individually search for distinct solutions, the two final recommendations
being evaluated and the best one chosen for execution. They analyse the performance of both algorithms on
20 games of the GVGAI corpus (but a different 20 than in my work) and EAroll appears to be significantly
better than vanilla RHEA and dominating the games used in their experiments.

2.3.3 Population diversity

Some work in literature looked at addressing the problem of solution space exploration. The aim here is to
move away from traditional evolution towards objectives (which would often result in several individuals
behaving similarly or get stuck in local optima) and instead attempt to obtain a population of individuals as
diverse as possible.

Mahfoud analyses several methods for population diversity, while focusing on the particular subset
called niching (90). The study suggests that algorithm convergence to local optima is due to three fac-
tors: selection noise (random choices between individuals with the same fitness forces the removal of good
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individuals), selection pressure (low fitness individuals disappearing from a finite population during evo-
lution) and operator disruption (crossover and mutation might worsen good solutions). Therefore some
works focused on reducing the selection noise (stochastic remainder selection with replacement (91) and
stochastic universal selection (92)), but Mahfoud’s analysis shows them to not address the problem well
enough. Some direct infusion methods (such as increasing mutation rates) are also shown to be ineffective
at obtaining useful diversity. Mauldin’s (93) uniqueness-assurance technique mutates new individuals until
they are sufficiently different before adding them to the population; although this results in diverse alleles,
it does not lead to a meaningful exploration of the solution space.

More details on many more population diversity methods are presented by Gupta and Ghafir in (94),
and Gabor presents two different options for integrating population diversity in algorithms very similar to
RHEA in (95).

Novelty search is a different approach to the same issue proposed by Lehman and Stanley (96) and
applied to several tasks that can be easily translated to the GVGAI environment. They replace the objective
function depicting the fitness of an individual with a novelty function. Therefore the fitness represents how
unique an individual is, instead of how good the solution is to the problem. Their method attempts to avoid
deception and leave evolution open-ended, without a clear definition of what a good solution implies, thus
not limiting the search or accidentally directing to dead ends. They obtain good results on biped walking
and maze navigation problems, their technique outperforming objective-based algorithms. Additionally,
they suggest this method might be more general, allowing for multiple diverse solutions to be obtained, the
user able to select which one to use in a flexible manner.

An extension to this is work by Gravina et al. (97) which looks at combining novelty search with a sur-
prise metric, leading to a wider exploration of the solution space and outperforming both of the components
on robot navigation tasks. Surprise search was first introduced in (98) and comprises of two processes:
identification of the expected behaviour, and calculation of the deviation from the expected. Experiments
on navigation tasks show this search method to be faster and more robust than novelty or objective search,
with overall performance comparable to novelty search. The speed of the algorithm, in particular, lends it
naturally to the real-time environments explored in this thesis.

These same concepts can be extended to Quality Diversity algorithms, such as Map-Elites (99), which
aim to explore a wide variety of high-performing solutions to a problem. As such, Gravina et al. (100) use
surprise to drive the search and show improved performance on several deceptive maze navigation tasks.
MAP-Elites was applied in GVGAI specifically in the context of procedural content generated, to create
diverse set of levels showcasing a variety of mechanics in isolation and in combination (101). A similar
approach can be extended to better observe the parameter space of RHEA and better classify its behaviour
on the variety of environments tested.

2.3.4 Macro actions

Another solution proposed for the computation time limit and level exploration issues is using macro actions
(high-level actions which contain information on strategies or tactics, rather than the granular input required
by games). A simple form of this is frame-skipping, which involves returning actions only every N game
ticks and using the time in-between for longer decision-making. A variant of this which repeats the action
chosen N times was tried in GVGAI physics-based games with mixed results (26).

The idea of using macro actions (from a simple action repetition to the design of more complex variants)
has been used multiple times when the size of the state space makes search a very costly task. Pioneered
in the early days of Reinforcement Learning (102), macro actions have been used in Real-Time Strategy
games like Wargus (103) (applying them to simultaneous moves of variable duration), the artificial game
P-Game (104) and the card game Dou Di Zhu (105), where the authors split actions in several consecutive
decisions in order to reduce the branching factor at the expense of tree depth.

Last but not least, macro actions have also been used in the PTSP game mentioned above (106; 7), both
for tree search and evolutionary techniques, as explored in this thesis. In their work, the authors propose a
simple repetition of actions as a way to coarse the search and provide a longer thinking time for the agent
in this real-time game. Results showed that there was an optimal amount of times an action should be
repeated to maximise performance: shorter macro actions would not allow for an effective exploration of
the search space, while longer ones did not provide the agent with enough precision to navigate through the
maze efficiently. A similar approach has been followed in this work when applying this concept to the new
GVGAI games, aiming to investigate if the findings there extrapolate to multiple games at once.
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2.4 Visual Game Analysis
There is extensive literature on game data mining and gameplay data analysis and visualisation. Wallner
and Kriglstein (107) give a large overview of the state-of-the-art in their survey, identifying various clas-
sifications of the works, based on applications, target audience and representation type. The applications
of visual data analysis are quite extensive as well, ranging from game design (108) to analysing player
behaviour (109) and understanding player movement (110). Additionally, gameplay data analysis can be
used to identify cheating in various games; one form of cheating is botting, where players use AI agents to
play the game instead. Mitterhofer et al. (111) used logs of character movement to identify botting.

Several tools have been created for visual data analysis as well. One example is Scelight (112) for
StarCraft II, which provides various statistical information (e.g. game length, speed and other player specific
information) and diagrams showing, for example, which and how many actions are performed every minute.
Another tool is “Echo”, designed for DotA 2 (113) and launched at ESL One Hamburg. “Echo” gathers
statistics about matches played and overlays visual information on top of the game currently played for a
more detailed analysis of gameplay, in order to enhance the viewing experience.

However, there are not many stand-alone visualisation tools or in-depth analysis of inner-workings of
AI algorithms playing games. Some projects exist which look directly at tools for visualising Monte Carlo
Tree Search (MCTS) within specific games, such as Connect 4. Volz et al. (114) proposed a set of algorithm
and game measures and prototyped a visualisation tool for general video game playing. Simon Lucas (115)
promotes easily accessible games in a web browser with handy visualisations included. The work pre-
sented in this thesis extends this proposal by implementing an extended set of measures and formalising a
visualisation tool that is decoupled from GVGAI.

2.5 Win Prediction
There is extensive literature on extracting various AI gameplay measures. Traditionally, these methods are
predominantly used in the area of Procedural Content Generation in order to assess the quality of a level or
game created automatically.

Liapis et al. (116) create models of player types called “procedural personas”, which then they use to
automatically generate levels of a roguelike puzzle game. For this purpose, they identify several features
that the evolved agents will focus on: the number of monsters they kill, the number of treasures collected
or reaching the exit of the level. Using these different personas to automatically play-test levels, the authors
are able to generate interesting levels which highlight agent strengths.

Some researchers focus more on the area of human-computer interaction and how measures extracted
from gameplay can be used in predicting various aspects characterising automatically generated games
(engagement, frustration and challenge in (117); or human enjoyment when playing against different ghost
teams in the game Ms Pac-Man (118)). The content and gameplay features highlighted by Shaker et al. (117)
in the platformer game Super Mario Bros are directly applicable to AI gameplay as well as humans: num-
ber of enemies, number and width of gaps in the level, enemies placement, boxes, power-ups and events
triggered during play.

Sombat et al. (118) analyse human enjoyment when playing against different ghost teams in the game
Ms Pac-Man. They show that they are able to classify ghost team enjoyment and identify several measures
to this extent, regarding the ghost team’s play style: level of challenge (time taken for the ghosts to capture
the player), level of behaviour diversity (variations in score obtained by the same player in multiple games)
and level of spatial diversity (how much of the level the ghosts explore). The authors use these three
measures to quantify the perceived level of entertainment of a Ms Pac-Man game.

Isaksen et al. (119) define several metrics characterising dice games: win bias (the difference between
the probabilities of player A winning a dice battle and player A losing the battle), tie percentage (the
probability of a tie in a given battle) and closeness (how much the result of the battle centred around a tie).
Volz et al. (120) evaluate how close the game ended as well in the card game Top Trumps with the objective
of automatically balancing the game.

Several authors look at skill depth as a measure for good games, a technique applied to various problems.
Liu et al. evolve a Space Battle game with a Multi-Armed Bandit version of a Random Mutation Hill
Climber, using the difference between a Monte Carlo Tree Search (MCTS) player and a random shooting
one as their measure of depth (89). Kunanusont et al. apply the concept of skill depth for evolving a
similar Space Battle game using the N-Tuple Bandit EA in (31), while employing three different agents
for comparison (MCTS, One Step Look Ahead and random). Perez et al. automatically generate maps
for the Physical Travelling Salesman Problem in (121), assessing the skill depth of each by again having a
novice, medium and advanced player test each generated map and calculating the difference in performance
(defined as the time taken to complete the task), aiming to maximise the gaps between players.
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Nevertheless, for all of the above mentioned cases, two different games need to be played in order for
the measures to be computed, which is not feasible in planning scenarios when an AI agent is seeing a game
for the first (and only) time.

However, the features explored by these authors are game-specific and applying these methods to other
domains is not straightforward. When designing games, Browne and Maire (122) looked at 57 different
criteria in judging an evolved game split into 3 categories, intrinsic, viability and quality. The authors use
general game-playing agents to test their games, which are written in the Ludi Game Description Language.
Most of the quality features analysed are resultant from AI game-play, such as depth, drama, decisiveness
or uncertainty. Some of these metrics, where possible to translate to single-player games, were adapted for
our study.

Several works move away from the area of PCG and instead focus on extracting measures of player be-
haviour to specifically tune game-playing agents or perform a deeper performance analysis than the typical
win rate investigation. Khalifa et al. (123) used features from human gameplay data to tune a human-like
Monte Carlo Tree Search (MCTS) player. Their features mostly focused on actions, such as action rep-
etition, change frequency or pauses, with an additional map exploration metric. The authors applied the
features extracted from human data to tune a Monte Carlo Tree Search agent on 3 different games in the
General Video Game AI framework (GVGAI), with mixed results.

More general measures for better analysis are depicted by Volz et al. in (114). Their prototype imple-
menting the measures for live game-playing agent analysis also uses the GVGAI framework, allowing for a
general application of the method on several different games. Some of these metrics, such as decisiveness
or action entropy, were included in this study, excluding multi-player or comparison metrics.

Some researchers use such metrics for machine learning tasks. For example, Bontrager et al. (1) cluster
the games in the GVGAI framework based on the performance of several agents submitted to the corre-
sponding competition. In this case, the performance of an agent is simply characterised by the win rate,
which is shown to differ between the players. The authors signify that some agents possess skills useful in
certain tasks, while other agents lack or make up for them in different ways.

Mendes et al. (124) used this conclusion to construct a hyper-heuristic agent. The authors extracted
several game features (number and type of NPCs, resources available, map dimensions and number and
types of other sprites) and used a classification method to determine which AI agents, selected from a subset
of GVGAI competition entries, achieve highest win rates when specific game features or combination of
features are present in a new game tested. The algorithm then decides which agent to query for a solution
depending on the recommendation of the classifier (a Support Vector Machine and a Decision Tree). The
agent selected will play the entire game with no changes.

A similar approach was employed by Horn et al. in (54) for AI hybrid evaluation (excluding the hyper-
heuristic construction step). They propose a game difficulty estimation scheme based on game features
(NPC types, puzzle elements, path-finding requirements or traps). These are arguably more open to human
bias, as each metric is evaluated manually. Although the game difficulty features identified do not corre-
spond to agent win rates, the authors carry out an analysis which gives a deeper insight into reasons for
agent performance levels.

These works are, however, based on game features as defined by human knowledge on the existing data
set. My work in (20) proposes a game win predictor based solely on agent experiences, aiming to remove
potential human bias resultant from designing features seen on known games.

2.6 Optimisation
In any domain where control parameters exist to change the behaviour of an algorithm, finding the correct
settings for the parameters becomes a very important problem. For games, in general, choosing good
parameters could affect the flow and balance of a game and make the difference between a great player
experience and an unplayable game. For game-playing algorithms, well chosen parameters could lead
to high performance and interesting behaviours, whereas other combinations might not work at all. For
instance, increasing the population size of an evolutionary algorithm has been shown to increase robustness
to noise (125). Automatic optimisation is one solution to this problem, concerned with automatically testing
various configurations and choosing those hyper-parameters that lead to the best result, as defined for the
given problem.

In the area of Game AI, evolutionary algorithms are a common choice for automatic optimisation al-
gorithms (126), being employed in several areas, from game tuning to agent or heuristic optimisation.
However, the main problem many of these algorithms deal with is that of expensive configuration tests. As
an example, for agent parameter optimisation (our focus in some experiments presented in this thesis), a pa-
rameter configuration test consists of running the agent with the given parameters in one or several games,
once or multiple times for more accurate approximation of the agent’s performance in that setting. Although
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most games used for AI benchmarking are designed to be fast to run, doing so enough times to explore the
parameter space of the agent efficiently can be very expensive still. Even more so, if such optimisation is
considered for larger problems and complex domains that are maybe not optimised themselves for speed,
could pose even greater problems and lead to very long run times before a good enough configuration can
be found. Note that we use the term good enough when referring to such optimisation problems, as the
optimal is rarely an option or even a necessity for most cases.

Taking these aspects into account, model-based algorithms are often a more popular choice for com-
putationally expensive domains (127; 128). These approaches store information and statistics internally to
be able to approximate the value of some solutions, and choose which ones should be more thoroughly
evaluated in the real domain, in order to make efficient use of the computation budget given and shorten run
times (129).

A different common problem that optimisation methods need to deal with is the noise in the problem
domain: in the case of game-playing agent optimisation, this can arise from both the algorithm playing the
game, and the game itself. Re-sampling can be an option (i.e. running the evaluation multiple times and
using a combination of all values obtained, instead of a single value), although this increases computation
time and the budget can become an issue again; without re-sampling, the values obtained for the solutions
evaluated might not be indicative of the actual quality of the solution, and therefore the algorithm would
explore sub-optimal parts of the search space and recommend solutions that are not consistently good
enough. A naive approach is using a simple bandit algorithm, Upper Confidence Bound (UCB) (130), to
balance between re-evaluating solutions thought to be good to gain more accurate statistics about their true
value, and exploring new or less often visited settings. This approach was shown to obtain good results in
some cases (131), but it does not account for potential dependencies between the solution dimensions (in
this case, dependencies between algorithm parameters).

Approaches based on Hyper-Heuristics have been used in GVGAI by Mendes et al. (132). These ap-
proaches train the agent offline to recognise the best strategy for the game at hand from a portfolio. When
the agent has to play a new game, it uses the trained mechanism to select the best strategy depending on
some of the game’s features. Experiments have shown that these approaches are promising and are able to
outperform agents based on standard algorithms.

The N-Tuple Bandit Evolutionary Algorithm (NTBEA) was first introduced in 2017 with an application
for automatic game optimisation (31) and later formalised in (133) with an alternative application for game-
playing agent parameter optimisation. NTBEA combines evolutionary algorithms with n-tuple systems for
its internal model, and bandit-based sampling, following on from the bandit-based Random Mutation Hill
Climber proposed previously (78). NTBEA was designed for sample-efficient hyper-parameter optimisation
in noisy environments and shows competitive results compared to other state-of-the-art methods (34).

While such works are promising in optimising RHEA’s parameters offline, attention to online adaptation
of game-playing agents has increased recently, also due to the increased interest in general game playing
(GGP), where the optimal configuration has to be learned online. One of the first attempts at adapting GGP
agents online concerned the adaptation of the playing strategy (134). An online mechanism decides how
to allocate available samples to evaluate a portfolio of strategies for the agent, and find the one that is best
suited for the current game. Results on abstract games showed that a strategy based on a MAB that tries
to allocate the highest number of samples to the best playing strategy while still exploring other strategies
performs best.

Similarly, an online mechanism was used to find the best parameter configuration for an MCTS agent
depending on the game being played (32; 131). In this approach, the result of each MCTS simulation
is used to evaluate the quality of the parameter values that control the simulation. Moreover, statistics
collected so far on the performance of parameter values are used to choose which values to evaluate next.
This approach has been tested both on classic board games (32) and on arcade-style video games (131).
On board games, it had positive results, especially when the number of tuned parameters is small. On
video games, online tuning was shown to be harder, nevertheless promising for a few of them. Moreover,
in GVGP, randomisation of MCTS parameters online was tested and shown to perform closely to online
parameter tuning, provided that parameter values are selected from a reasonable subset of feasible values
(135). Work by Stefan Bussemaker takes these ideas forward and combines them with multi-objective and
macro actions modifications for superior performance (136).
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Chapter 3

Rolling Horizon Evolutionary
Algorithm

This chapter will describe the basics of the algorithm at the base of the work presented, as well as all
modifications and hyper-parameters studied in this thesis.

3.1 Vanilla RHEA
RHEA utilises Evolutionary Algorithms (EA) to evolve an in-game sequence of actions at every game tick,
with restricted computation time per execution. This subsection will describe the baseline algorithm, often
referred to as vanilla; modifications applied are detailed in Section 3.2.

In this application of EAs for game-playing, the genotype is described as a vector of integers of length
L (individual length, or sequence length, or horizon), where each integer a is in the range [0, N), with
N being the maximum number of actions in a given game state S. This translates to a phenotype as a
sequence of actions played in the game starting from state S0, or, in other words, the behaviour of the
player. In our implementation, the EA considers all individuals, and genes in the individuals, as legal and
feasible (this is a potential limitation, as redundant actions are often considered; future work will look at
adapting methods to avoid this, such as (137; 138)). In order to evaluate an individual in this context (see
Figure 3.2), RHEA uses the forward model of the game, an internal model of the world, to simulate through
the actions, one at a time. The game state reached at the end is then evaluated with a heuristic function h and
this value becomes the fitness of the individual: therefore, we are evolving action sequences which lead to
the best game outcome, limited to the exploration range L. The function h is always kept to a generic form
throughout the experiments; this aims to maximise the game score, while favouring wins and discouraging
losses, see Equation 3.1 (s is the game state being evaluated and r is the reward obtained from the game (or
in-game score), normalised in (0, 1)).

h(s) =


1 , win
0 , lose
r , otherwise

(3.1)

Alternative heuristics were explored by Guerrero et al. (139), with a view of their application for game
testing (140), i.e. agents have different goals to achieve such as exploring more of the level space or gaining
knowledge about sprite interactions. Santos and Bernardino also propose the use of advanced heuristics to
better guide the agent’s search process (141). However, the purpose of the work described in this thesis is
to investigate the algorithm itself and keeping a consistent focus on solving the given problems between all
studies described helps highlight the benefit of various modifications, parameter choices and enhancements.

Using this method to evaluate individuals, the vanilla algorithm follows a typical EA process (see Fig-
ure 3.1). It begins by initialising a population of P individuals of length L at random and evaluates them.
At every generation, while budget is still available, it promotes E individuals directly to the next generation
through elitism. It then generates P offspring by repeatedly selecting parents through tournament selection,
crosses them with uniform crossover to create a child, and mutates the child through uniform mutation be-
fore adding it to the pool of offspring. The best P − E individuals from both parents and offspring pools
are added to the next generation and the process repeats. See Algorithm 1 for pseudocode of the process
repeated at every game step.

Typically, a budget of 40ms per game tick is given to the algorithm for real-time decision-making. As
the agents have a limited amount of time to make decisions in real-time games, one of the popular methods
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Figure 3.1: Rolling Horizon Evolutionary Algorithm cycle, repeated for several generations.
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Figure 3.2: Evaluation of one individual in the Rolling Horizon Evolutionary Algorithm, given the current
game state.
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Algorithm 1 Vanilla Rolling Horizon Evolutionary Algorithm

1: procedure MAIN(st, budget) . Game state at time step t and FM budget available
2: k ← 0
3: Pk ← initializePop(budget)
4: while budget 6= 0 do
5: Pk+1.add( first E individuals from Pk)
6: O ← new array
7: for j = 0 : pop size do
8: p1, p2 ← selectParents(Pk) . Tournament selection
9: I ′ ← cross(p1, p2) . Uniform crossover

10: I ′ ← mutate(I ′) . Uniform mutation
11: evaluate(I ′, st, budget)
12: O[j]← I ′

13: pool← Pk +O
14: sort(pool) . Sort in ascending order based on fitness
15: Pk+1.add( first P − E individuals from pool)
16: k ← k + 1

17: best← first individual from Pk
18: at ← best[0]
19: return at . Action to play at time step t
20:
21: procedure INITIALIZEPOP(st, n actions, budget)
22: P ← new array
23: for k = 0 : pop size do
24: I ← new array
25: for j = 0 : ind length do
26: I[j]← random(0, n actions)

27: evaluate(I, st, budget)
28: P [k]← I

29: return P . Initial population
30:
31: procedure EVALUATE(I , st, budget)
32: for j = 0 : ind length do . Iterate through actions in individual
33: st+j+1 ← st+j .advance(I[j]) . Use FM to advance game state given action in individual
34: budget← budget− 1

35: f ← h(st+ind length) . Use Equation 3.1
36: return f . Fitness of individual I

in the literature consists of generating only one new individual at each generation, therefore making it
possible to interrupt the process at any point. The most basic form this algorithm can take is that of a
Random Mutation Hill Climber (74), where the population size is only 1, using the mutation operator as the
only way to navigate through the search space.

3.2 Modifications and Parameters

This section describes all the hyper-parameters of the algorithm, including hybrids and modifications on/off
flags. All algorithm parameters are presented in Table 3.1. Several dependent parameters are highlighted in
the table: these are parameters that would not impact the phenotype without specific values taken by other
parameters, as detailed below. Default choices for parameters, which would form the vanilla algorithm
configurations, are also highlighted in the text: we note that this is the baseline for all experiments in the
thesis, kept to its most simple form for consistency and ease of comparison across different experimental
setups.

3.2.1 Genetic Operators

There are three main genetic operators used by the evolutionary algorithm in RHEA: crossover, selection
and mutation. In our implementation, selection is only used to select parents for offspring, subsequent
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Table 3.1: Parameter Search Space. Parameters noted with † are dependent on the value of other parameters.
Last column shows default values for each parameter; unless otherwise specified, the parameters in all
experiments are fixed to this value when not varied for studies.

Idx Parameter Type Value Range Default Value
p0 Population Size int [1−∞) 10
p1 Individual Length int [1−∞) 15
p2 Dynamic Depth bool {False, True} False
p3 Offspring Count int [1−∞) p0
p4 Number Elites int [1− p0) 1
p5 Initialisation Type categ. {Random, 1SLA, MCTS} Random

p6 Genetic Operator categ. {Crossover Only, Mutation
Only, Crossover + Mutation} Crossover + Mutation

p7 Selection Type †(p6) categ. {Rank, Tournament,
Roulette} Tournament

p8 Crossover Type †(p6) categ. {Uniform, 1-point, 2-point} Uniform

p9 Mutation Type †(p6) categ. {Uniform, 1-Bit, 2-Bits,
Softmax, Diversity(p20)} Uniform

p10 Fitness Assignment categ. {Last, Delta, Average, Min,
Max, Discount} Last

p11 Diversity Weight double [0.0− 1.0] 0.0
p12 Frame-skip int [0− game length) 0

p13 Frame-skip Type †(p12) categ. {Repeat, Null, Random,
Sequence} -

p14 Shift Buffer bool {False, True} False
p15 Shift Discount †(p14) double [0.0− 1.0] -
p16 MC Rollouts Length double [0.0−∞) 0.0
p17 MC Rollouts Repeat †(p16) int [1−∞) -
p18 Bandit-based mutation bool {False, True} False
p19 Statistical tree bool {False, True} False
p20 Diversity mutation †(p9) bool {False, True} False
p21 Diversity fitness bool {False, True} False
p22 Diversity type †(p20, p21) categ. {Genotypic, Phenotypic} -

generations being formed directly with the best individuals from the current generation (with no further
selection being applied). These three genetic operators each have several implementation options, as dis-
cussed below. A hyper-parameter controls which operators should be applied, with options of only using
crossover (and selection), only using mutation, or using all three to first obtain an offspring from crossover,
and then mutate it as well. It is worth noting that the operator type parameters detailed below are dependent
on the choice of genetic operator: changing the mutation type would not have any effect on the phenotype
if no mutation is used in the algorithm, and similarly for crossover and selection. The default choice for this
parameter is utilising both crossover and mutation.

Selection.

Three types of selection are available in the system: tournament, roulette and rank. All options describe the
process for selecting one individual, which is then repeated again for the second parent. See Figure 3.3 for a
visual representation of the different options. The default choice for this parameter is tournament selection.

Tournament selection picks a percentage of the population (t = 50% by default) at random and then
chooses the best individuals from these to reproduce.

Roulette selection chooses individuals with probabilities directly proportional to their fitness (therefore,
higher fitness individuals have a higher chance of being selected). This can pose a high selection pressure
if the fitness of individuals have large differences between them.

Rank selection first assigns inverse-ranks to all individuals in the population according to their fitness
(the lowest fitness individual would have rank 1, second lowest rank 2 etc.) and then chooses individuals
with probabilities equal to their rank (therefore, higher fitness individuals have a higher chance of being
selected, but the selection pressure is reduced by minimising the differences in fitness).
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Figure 3.3: Selection options: roulette, rank and tournament. The first two can be seen as wheels spinning
and the slice (or individual) next to the selection point is the one chosen; they are both representations of
the same population. In the tournament visualisation, the yellow individuals were randomly chosen for the
tournament, and the one highlighted green had the highest fitness amongst them and was selected.

Crossover.

Two types of crossover are available in the system: uniform and n-point. Although all options could produce
two offspring, depending on which of the two parents is considered ‘first’, only one individual is produced
from each pairing in this implementation. The default choice for this parameter is uniform crossover.

Uniform crossover selects genes from either of the parents with equal probability.
n-point crossover randomly selects n points along the individuals which would split all individuals

in subsections, the offspring being formed then by alternatively choosing subsections of genes from the
parents; we use 1 and 2 as possible values for n, leading to three total values for the crossover parameter.

Mutation.

Three types of mutation are available in the system: uniform, Softmax and n-bits. The default choice for
this parameter is uniform mutation.

Uniform mutation assigns each gene an equal probability of mutation (m = 1/L, where L is the
individual length) and picks a new different value for the genes mutating, the values also being chosen
uniformly at random.

Softmax mutation uses the Softmax equation (see Equation 3.2) to bias mutation towards the beginning
of the individual, which causes the largest perturbation in the action sequence (changing any gene in the
individual, in this context, also changes the meaning of all subsequent genes - therefore changes in the
beginning of the genome have the largest impact in the phenotype).

n-bit mutation chooses n genes uniformly at random to mutate to a new and different random value;
we use 1 and 2 as possible values for n, leading to a total of four values for the mutation parameter.

Softmax(xi) =
exp(xi)∑
j exp(xj)

(3.2)

3.2.2 Fitness Assignment

A key part of the algorithm is deciding how to calculate the fitness resultant from an individual’s phenotype.
Individuals are sequences of actions which are executed, in order, during evaluation, resulting in a sequence
of game states that the AI player traverses. If all game states traversed are evaluated with a heuristic function
h (see Equation 3.1), then we obtain an array of values F .

This array can then be translated to a fitness value for the individual being evaluated in different ways:
keeping only the value of the last game state reached, F [L − 1] (prioritises the direct outcome of the ac-
tion sequence); keeping the difference between the value of the last state and the value of the first state,
∆(F [L − 1], F [0]) (prioritises state improvement); keeping the average of all game state values, F (pri-
oritises consistency throughout the action sequence); keeping the minimum value, min(F ) (pessimistic
model, could miss very good outcomes but avoid bad ones); keeping the maximum value, max(F ) (opti-
mistic model, could miss very bad outcomes, but catches good ones); or keeping a discounted sum of all
values:

∑L
i=0 F [i]× γi, where γ = 0.9 (prioritises immediate rewards). The default choice for this param-

eter is assigning the value of the last game state reached, F [L − 1], which is most robust to game-specific
reward systems fluctuations.
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3.2.3 Initialisation
In the vanilla version, the algorithm is initialised with random individuals (all genes in all individuals are
picked uniformly at random from all possible values). We add two different options for obtaining the initial
population of individuals.

1SLA.

The One Step Look Ahead (1SLA) algorithm performs an exhaustive search of all possible options for a
gene and picks the action which leads to the highest value for the following game state (using the same
heuristic function h depicted in Equation 3.1). To form an individual, this process is followed for each
gene, an action is chosen, the game state is advanced with the chosen action and the process is repeated
again for the next gene until an action sequence of sufficient length is generated. If the end of the game is
reached during the creation of an individual, the individual is padded with random actions until it meets the
required length.

For initialisation of a RHEA population, the first individual is created with the 1SLA algorithm and the
rest are mutations of the first (mutation type used is the same given by the mutation type hyper-parameter).
Giving a greedy approach, this reduces the randomness of the initial population and begins search from a
local optimum. See Figure 3.4 for a visualisation of this process.

(a) Performing greedy search on all possible actions. (b) The algorithm is used repeatedly to generate an ac-
tion sequence to be evolved by RHEA. Chosen actions
are those resulting in game states with highest values
amongst all actions.

Figure 3.4: One Step Look Ahead (1SLA).

MCTS.

Monte Carlo Tree Search (MCTS, see Figure 3.5) iteratively builds a search tree by following four steps.
First, it selects a node in the tree to expand, using the UCB1 formula (see Equation 3.3, where: constant
C =
√

2, a is the chosen action from the set of possible actions A(s), s is the current game state, Q(s, a) is
the value of choosing action a from state s,N(s) is the number of times state s has been visited andN(s, a)
is the number of times state s has been visited and action a was chosen next). It then adds a new child of
the selected node to the tree and runs a Monte Carlo simulation from the node (a sequence of random
actions up to a maximum tree depth L). Finally, it updates the statistics (N(s), N(s, a) and Q(s, a)) of all
nodes traversed during the iteration with the value given by the heuristic h for the final game state reached
after Monte Carlo simulations. This tree grows asymmetrically as MCTS balances between exploration of
uncertain actions and exploitation of seemingly good actions.

It is worth noting that this same MCTS agent is used in several other experiments. As this implementa-
tion does not store game states in the nodes of the tree it builds, we consider it an Open Loop approach.

For initialisation of a RHEA population, MCTS 2.2 is run for half the budget and the first individual is
selected by greedily traversing the tree created. As the tree would not be fully expanded, the path through
the tree is capped when a node with less than 3 visits is reached and actions are added randomly afterwards,
up until individual length L. Similarly to the 1SLA initialisation, the rest of the individuals in the population
are mutated from the first.

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(3.3)

3.2.4 Frame-skip
Frame-skipping has become common practice in several Reinforcement Learning works, and key in the
success of specific applications (142; 143): grouping N game states when making a decision, to increase
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(a) The four steps of MCTS: selection, expansion, simu-
lation and backpropagation.

(b) A completed tree at the end of several MCTS iter-
ations and the path traversed to generate an action se-
quence to be evolved by RHEA; chosen actions are those
with highest Q(s, a) value amongst child nodes, where
higher Q values are shown with greener colours, and
lower values close to red.

Figure 3.5: Monte Carlo Tree Search (MCTS)

the data available and reduce the frequency of decisions returned to only every N game states. Statistical
forward planning approaches, on the other hand, usually make a new decision at every game tick, repeating
their search process in the very limited time. With this modification, we test if SFP methods can also benefit
from a longer time for making decision by only returning an action every N game ticks, replying according
to a specific strategy for the game ticks in-between and using all the time in-between decisions for planning
the next move. We test 0 (no frame-skip, decisions at every game tick), 5 and 10 as values for N and four
different strategies for actions in-between decisions: repeat, null, random and sequence. The default choice
for this parameter is 0 (no frame-skip is used in the vanilla algorithm).

The repeat strategy simply repeats the previously decided action until a new action is decided. The
null strategy plays ACTION NIL (does nothing), which more closely mimics human player gameplay with
pauses in-between actions. The random strategy plays a random action and the sequence strategy continues
playing the following actions in the best individual returned with the last decision. The frame-skip type
parameter is dependant on the frame-skip value: if no frame-skip is used (value 0), then changing the
frame-skip type would have no effect on the phenotype.

3.2.5 Shift Buffer
This is a population management technique which avoids repeating the entire search process from scratch
at every new game tick, which usually loses information gained in previous iterations of the algorithm;
this is meant to make the algorithm more sample-efficient by retaining previous computation information.
A shift buffer works by keeping the final population evolved during one game tick to the next. However,
as the first action of the best individual has just been played, all first actions from all individuals in the
population are removed and a new random action is added at the end. Additionally, there exists the option
in our implementation to apply a discount to the values of all individuals in the new population, which
can be either 0.9, 0.99 or 1.0 (no discount applied); this would weaken the values of previously obtained
sequences in the new context. The shift buffer discount parameter is dependent on the shift buffer toggle: if
no shift buffer is used, then changing the shift buffer discount would have no effect on the phenotype. No
shift buffer is used in the vanilla algorithm.

3.2.6 Dynamic Depth
When testing Artificial Intelligence agents on multiple distinct games in a general game playing black box
setting, the main difficulty the players face is being able to correctly judge and differentiate situations. Most
games cannot be fully explored until the end due to their complexity in action space, state space or both.

If the algorithm is targeted at a particular game, human knowledge about the problem can be integrated
into the heuristic function in order to effectively guide the search in the right direction, even if no “natural”
rewards (from the game) are observed by the agent. However, the lack of domain knowledge in general
video game playing poses a significant challenge on how to bias or guide the search effectively in the case
of a mostly flat reward landscape (49).

Further, it is often the case that different games benefit from different algorithm parameters and one key
aspect is the length of the action plans used in RHEA. We expect games with dense rewards to generally
benefit from shorter individuals which would allow for more generations and more statistics gathered to
facilitate quick strategic reactions; as opposed to games with sparse or no rewards, where longer individuals
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are required in order to be able to find those rewards farther ahead. This difference in reward density can
also be observed at a more granular level, during the play-through of only one game: some areas of the
game may contain more rewards, whereas others would require more exploration. Therefore, the dynamic
depth modification has the option of changing the length of the individuals at every 5 game ticks depending
on the flatness of the reward landscape, in order to examine the algorithm’s ability to adapt to the various
types of problems proposed, as described below. By default, this modification is not used in the vanilla
algorithm.

Algorithm 2 Adjusting rollout length dynamically
Require: t: current game tick
Require: fitnessLandscape: the fitness landscape (all fitness values) observed in the previous game tick
Require: fLd: fitness landscape flatness
Require: L: rollout length
Require: ω: adjustment frequency
Require: SD−: lower fLd limit for L increase
Require: SD+: upper fLd limit for L decrease
Require: MD: rollout length modifier
Require: MIND: minimum value for L
Require: MAXD: maximum value for L

1:
2: if t mod ω = 0 then
3: if fitnessLandscape = null then
4: fLd ← SD−
5: else
6: fLd ← δ(fitnessLandscape) . get standard deviation
7: if fLd < SD− then
8: L← L+MD

9: else if fLd > SD+ then
10: L← L−MD

11: BOUND(L, MIND, MAXD)

12:
13: function BOUND(L, MIND, MAXD)
14: if L < MIND then
15: L←MIND
16: else if L > MAXD then
17: L←MAXD

return L

The pseudocode of the method used to adjust the rollout length is depicted in Algorithm 2. The adjust-
ment is set to occur with a frequency ω = 15 game ticks. The feature used to determine a change in rollout
length is the flatness of the fitness landscape observed in the previous game tick (fLd); this is therefore ig-
nored if the first game tick is currently observed (therefore no fitness landscapes were previously recorded).
The fitness landscape is a vector with all fitness values observed in one game tick by any individual in the
population (RHEA) or any rollout (MCTS), and its flatness is calculated as the standard deviation (δ) of all
the elements of this vector (Line 6).

The length L is then increased by the depth modifier MD = 5 if fLd falls below the lower limit (SD−
= 0.05), or is decreased by MD if fLd is above the upper limit (SD+ = 0.4) (see Lines 7-10). The length is
capped to always stay between a minimum (1) and a maximum (half of the maximum number of FM calls;
Line 11). This translates to shorter rollouts when the fitness values observed are highly varied (therefore
more sampling and processing of the current situation is needed to determine the right course of action) and
longer rollouts when the fitness landscape is flat, to encourage exploration of solutions farther ahead which
would give the agent more information to judge which would be the best move. The values for the different
variables (ω, SD−, SD+) were manually tuned for best performance of both algorithms on a random subset
of 5 games.

3.2.7 Monte Carlo Rollouts

We consider the hybridisation of the algorithm and its further combination with MCTS, which has been very
successful in many GVGAI games (2). We have previously described MCTS initialisation, but concepts
from MCTS can further be borrowed and integrated into RHEA, such as its Monte Carlo (MC) simulation
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phase, as initially proposed by (54). Therefore, the evaluation process in RHEA may add MC rollouts of
length {0.0 (no rollouts used), 0.5, 1.0 or 2.0} ×L after advancing through the action sequence of length L
represented by the individual; these may be repeated 1, 5 or 10 times for more statistics gathered. In order
for this to be compatible with the fitness assignment modifications, the values of all game states traversed
(or the average value for a particular game tick if there are repetitions performed) R are added at the end
of the array of state values F obtained from the individual and all fitness assignment methods are applied
to the combined array of values (F + R) instead. The MC rollout repetition parameter is dependent on
the rollout length: if the length is set to 0.0, then changing the number of rollout repetitions would have
no effect on the phenotype. The motivation behind the use of additional rollouts lies in the fact that the
algorithm receives a farther lookahead, without being restricted to only a specific set of actions (as it is the
case when the L parameter value is increased directly).

The default choice for this parameter is rollout length of 0.0 (no rollouts used in the vanilla algorithm).

3.2.8 Bandit-Based Mutation

The multi-armed bandit problem (144) is a classic problem, in which a gambler having access to multiple
machines needs to make a decision as to which machine’s lever they should pull. Each machine produces
a random reward from a specific probability distribution. The goal of the gambler is to maximise the
sum of rewards obtained through subsequent plays. Therefore they need to balance their exploration and
exploitation, in order to learn the different distributions, while getting the maximum benefits from their
plays.

One of the solutions to the problem, and the bandit-based mutation included in RHEA (explored pre-
viously in (78)), is using the UCB (Upper Confidence Bound) equation (Equation 3.3). The first term
(Q(s, a)) attempts to maximise the value of the play (exploitation). The second term favours levers which
were pulled the least number of times (exploration), N(s, a) indicating the number of times lever a was
pulled and N(s) the total number of plays. The constant C (C =

√
2) is that which balances between the

two terms and it may be adjusted to fit specific problems. In GVGAI, levers are represented by actions,
therefore, from one state, the UCB equation would ensure that good actions are chosen, while exploring
those not chosen as often to analyse their effect and build up the knowledge base.

In the RHEA variants with bandit-based mutation, two levels of bandit systems are used.
The first system is at individual level, used to select which gene to mutate. In the exploration term

from the UCB equation (Equation 3.3), N(s, a) is the number of times gene a was mutated and N(s) is
the total number of mutations. The exploitation term is determined by max(∆R), the maximum difference
in rewards observed when mutating gene a. The differences in rewards are updated after each mutation by
evaluating the new individual obtained. If the new ∆R is negative (thus there was no improvement in the
value of the individual), the mutation is reverted. Therefore, the individuals will never get worse with this
mutation operator.

The second system is at gene level (therefore L bandits, one for each gene). The information from all
of the individuals in the population is stored in the same set of L bandits as they all aim to find the same
optimal action plan. Therefore, a number P − E values are used for updating the bandit information each
generation. In this case, the exploration term is made up of the number of times geneX was changed (N(s))
and the number of times gene X received value a (N(s, a)). The exploration term is the ∆R corresponding
to the value a.

When combined with the shift buffer, the gene-level bandits are shifted along with the population in the
same manner. Additionally, all ∆R values are discounted by the same discount factor given by the shift
discount parameter.

By default, this modification is not used in the vanilla algorithm.

3.2.9 Statistical Tree

This modification keeps a statistical tree alongside the population evolved by RHEA, similar to the work
in (69). The tree is initialised at every game tick with the current game state as the root node. Then, each
sequence of actions considered by RHEA during its evolutionary process is used to traverse the tree, new
nodes being added if new actions are encountered. Each tree node visited in this operation is then updated:
the visit count is increased by 1, and the node average value is updated with the fitness of the individual.
(P − E)× L nodes are updated at each generation.

This statistical tree comes into play when choosing which move to make at the end of RHEA’s decision-
making process. The vanilla version of the algorithm returns the first action of the best individual found.
With this enhancement, the action returned is the tree’s root node’s child with the highest UCB value
(Equation 3.3), aiming for a better balance between exploitation and exploration of the search space.
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Combining this modification with the shift buffer results in the tree being trimmed and carried forward,
the root node’s selected child becoming the root of the tree in the next game step, while its siblings are
discarded, in a similar manner as in (69). If the tree is kept, the values stored in its nodes are discounted
according to the shift discount parameter.

By default, this modification is not used in the vanilla algorithm.

3.2.10 Diversity
Genotypic diversity keeps track of the values of each gene from all individuals explored during evolution
(each gene has a fixed list of possible values, and a dynamically-updated list of values visited during evo-
lution). The diversity score of an individual is the inverse sum of the number of visits per each of its gene
values. The mutation operator chooses to mutate the gene that has currently been explored the most, to the
value for the gene that has been explored the least.

Phenotypic diversity mutation keeps track of the positions (within the level grid) explored during
evolution. Individuals are rolled out to find the positions reached after each action is executed. The diversity
score of an individual is the inverse sum of the number of visits per each of its gene positions. The mutation
operator chooses to mutate the gene that leads to the most visited position, to a random different value.

The diversity type operator toggles between these two options. The diversity score is used when assign-
ing the fitness of an individual, as a simple weighted sum with the reward obtain from regular evaluations.
Fitness weight w is assigned to the diversity score, and 1− w to the reward obtained.

3.2.11 Other Parameters
Last but not least, we can change several ohter parameters in the algorithm:

• Population size: the number of individuals evaluated at once can vary between 1 and, technically,
infinity - the upper limit on the population size is imposed by the budget with respect to action plan
lengths and other modifications which might affect how the budget is spent. When the population
size is 1, the algorithm becomes a simple Random Mutation Hill Climber: only 1 new individual
is created at every generation by mutating the current individual, and the best of the two is carried
forward to the next generation to repeat the process. With 2 individuals in the population, crossover
is introduced as well, but not selection, as there could be no other choice for parents other than the 2
individuals. All modifications take full effect if the population size is 3 or larger.

• Offspring count: this parameter sets the number of individuals to be created at every generation.
For each one a process of selection (repeated twice to obtain 2 parents), crossover and mutation is
applied. The next generation will be formed of the best individuals from the pool combining parents
and offspring (or, alternatively, parents could be ignored and only offspring considered for the next
generation). By default, this is set to the size of the population.

• Number elites: this parameter sets the number of best individuals (highest fitness) promoted directly
to the next generation; these individuals may still spawn offspring, but they are guaranteed to continue
existing in the next generation. By default, this is set to 1.

• Individual length: this parameter sets the length of action plans evolved, introducing the trade-off
between multiple generations being produced (and therefore better chance of obtaining high-fitness
individuals) and longer lookahead into possible futures, which could be key in finding rewards in the
environment further away from the player.
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Chapter 4

RHEA Benchmarking

This chapter presents work done regarding benchmarking of Rolling Horizon Evolutionary Algorithms
(RHEA) in the context of the larger domain of General Video Game Playing and specifically on the General
Video Game AI (GVGAI) framework. It mostly focuses on improvements or modifications presented in
previous literature and integrates them into the same system for fair experiments, in the same environments
and under the same constraints. Parameters and modifications are tested in isolation, but some combinations
are also explored, as well as their larger effect on the inner-workings of the algorithm.

All of the studies are presented in the context of the General Video Game AI Framework and the games
described in Section 2.1.2; it is hardly possible that the same configurations of the algorithm would work
well across all games, as they showcase a variety of features and interesting differences requiring differ-
ent skills from the players, such as navigation, movement or shooting accuracy or execution of carefully
constructed plans.

We begin by exploring the two main and most basic parameters of the algorithm, its population size
and individual length. Next, we consider the initialisation method for the algorithm and the possibility
of starting the search from a better than random point in the space. We further look at combinations of
several modifications previously introduced separately in literature, and finish the chapter by exploring a
simple case of macro actions in physics-based games. All sections include a comparison to the previous
state-of-the-art algorithm, Monte Carlo Tree Search.

We define two concepts for the purpose of analysis and discussions presented in this section:

Definition 4.1 The solution space refers to an individual’s genotype, and is the set SS containing points
pSS ∈ SS, with pSS = (c0, c1, ..., cL), where ci is one coordinate for the point, corresponding to the
value of gene gi in an individual’s genome. For example, if the individual has length L = 3 and all genes
can take values in range [0,3], then (0,1,2) and (2,2,3) are valid points in the solution space, but (1,2,5)
and (2,2,0,1) are not. If a population contains individuals {(0,1,2), (2,2,3)}, then this population is said to
explore 2 points in the solution space. In other words, the solution space contains all possible combinations
of gene values in individuals.

Definition 4.2 The level space refers to an individual’s phenotype, and is the set SL containing points
pSL ∈ SL, with pSL = (x, y), where x is a coordinate on the X axis of the game’s 2D level grid, and y is
a coordinate on the Y axis of the level grid. For example, if the player’s avatar is at location (0,0) at game
tick t (with origin being in the top-left corner of the level grid) and an individual of length L = 3 maps to
the sequence of actions (down, down, right), then this individual is said to explore 4 points in the level
space, including the starting location: {(0,0), (0,1), (0,2), (1,2)}. In other words, the level space contains
all possible positions the player’s character can take on the level grid.

4.1 Population Size and Individual Length
The work in this section was published at Evostar 2017:

R. D. Gaina, J. Liu, S. M. Lucas, and D. Perez-Liebana, “Analysis of Vanilla Rolling Horizon Evolution
Parameters in General Video Game Playing,” in Springer Lecture Notes in Computer Science, Applications

of Evolutionary Computation, EvoApplications, no. 10199, 2017, pp. 418–434.

This section primarily aims at analysing the performance of the vanilla Rolling Horizon Evolutionary
Algorithm, as described in Section 3.1, with respect to the different nature of the games used as a testbed
and especially their stochasticity. The focus of this section lies in the 2 key parameters of the algorithm:
population size and individual length. These control the number of solutions evolved at the same time and
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the length of these solutions: higher population sizes mean sampling more solutions and increasing the
possibility of finding overall better action plans (see Figure 4.1); higher individual lengths mean simulating
the environment further into the future, which can allow the algorithm to find those rewards further away
into the future, thus especially useful in sparse reward environments (see Figures 4.2,4.3). However, it
is also worth noting that, in stochastic environments, longer rollouts would also lead to more prediction
inaccuracies, as the algorithm uses a model of the world for its simulations which would stray further from
reality the deeper into the future the algorithm looks.

(a) P = 1 (b) P = 3 (c) P = 5

(d) P = 10

Figure 4.1: Solution space explored by a simulated evolutionary algorithm with varying population sizes.
Individual length set to L = 2 for visualisation purposes, with values for each gene (0-5) on the X and Y
axes. Each colour is a different individual mutating over 20 generations (1-bit mutation), each point plotted
with 0.05 opacity (thus more intense colours signify the point was sampled more times).

(a) Level space coverage (L = 5). (b) Level space coverage (L = 10). (c) Level space coverage (L = 20).

Figure 4.2: Level space explored by a simulated evolutionary algorithm with varying individual lengths.
Population size set to P = 1 for visualisation purposes, axes corresponding to level space X and Y axes, in
a grid of size 10. Each point is plotted with 0.05 opacity (thus more intense colours signify the point was
sampled more times).

And while increasing both of these values might seem like an excellent idea, we are working within real-
time constraints and an interesting trade-off arises, where we can consider four separate extreme situations
(in these examples, we will denote with S small values for the parameters, and with L large values, using
the format {population size}-{individual length}):
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(a) Reward coverage in sparse envi-
ronments (L = 5).

(b) Reward coverage in sparse envi-
ronments (L = 20).

(c) Reward coverage in dense envi-
ronments (L = 5).

(d) Reward coverage in dense envi-
ronments (L = 20).

Figure 4.3: Level space explored by a simulated evolutionary algorithm with varying individual lengths.
Population size set to P = 1 for visualisation purposes, axes corresponding to level space X and Y axes, in
a grid of size 10. Each point is plotted with 0.05 opacity (thus more intense colours signify the point was
sampled more times). Featuring both positive (green) and negative (red) rewards, which give the colour to
the whole individual once encountered; blue remains neutral.

1. S-S: highest number of generations within budget and therefore most accurate statistics obtained
from evolution; the algorithm is, however, myopic, and likely to not find rewards further away and
therefore unable to navigate a flat reward landscape. It does not explore much of the level space, and
it is likely to not explore much of the solution space either (restricted to the neighbourhood of the few
initial solutions).

2. S-L: medium number of generations within budget, but with longer lookaheads; the algorithm is now
more likely to find rewards farther ahead, exploring more of the level space, but it is, similarly to the
case of S-S, constrained to navigating a small part of the solution space.

3. L-S: medium number of generations within budget, this time with more solutions, leading to a wider
exploration of the solution space, but the algorithm is again myopic and has a higher chance of getting
stuck in a flat reward landscape, not exploring much of the level space.

4. L-L: lowest number of generations within budget, resulting in less accurate statistics of which solu-
tions are actually good: however, the algorithm has a very high chance of finding far-away rewards
through ample level space exploration, as well as exploring more of the solution space.

In the extreme case, where the budget is only used for initialising and evaluating a single population,
and no budget remains for evolution, the algorithm becomes Random Search in the space of action plans. In
the extreme case of using a single individual in the population, the algorithm becomes a Random Mutation
Hill Climber, which aims to improve that single solution through repeated mutations.

This section therefore analyses how modifying the population size (P ) and individual length (L) con-
figuration of vanilla RHEA impacts performance in a generic setting. Exhaustive experiments were run
on all combinations between population sizes P = {1, 2, 5, 7, 10, 13, 20} and individual lengths L =
{6, 8, 10, 12, 14, 16, 20}. The budget defined for planning at each game step was set as 480 forward model
calls to the advance function, the average number of calls MCTS is able to perform in 40ms of thinking time
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Table 4.1: Average win rate over all 20 games tested, for different values of population size (P ) and
individual length (L). Standard errors in brackets. Highlighted in bold style is the best result.

P L=6 L=8 L=10 L=12 L=14 L=16 L=20
1 35.45(2.54) 38.25(2.54) 37.95(2.47) 36.70(2.58) 34.20(2.42) 33.55(2.57) 33.15(2.60)
2 39.95(2.62) 40.95(2.55) 41.05(2.62) 40.25(2.48) 39.50(2.56) 38.75(2.56) 36.80(2.60)
5 42.55(2.57) 43.50(2.39) 44.65(2.40) 44.25(2.38) 43.80(2.34) 44.95(2.53) 46.05(2.54)
7 43.00(2.49) 42.60(2.43) 44.65(2.36) 44.35(2.45) 45.30(2.23) 44.80(2.47) 47.05(2.56)
10 42.25(2.53) 43.60(2.49) 44.05(2.26) 45.80(2.47) 45.05(2.35) 46.60(2.45) 46.80(2.49)
13 42.65(2.43) 45.15(2.48) 45.15(2.47) 45.00(2.42) 46.25(2.41) 47.40(2.30) 47.05(2.42)
20 42.75(2.51) 43.20(2.60) 44.75(2.31) 45.50(2.34) 46.45(2.32) 46.30(2.32) 47.50 (2.33)

Table 4.2: Average win rate over the 10 deterministic games tested, for different values of population size
(P ) and individual length (L). Standard errors in brackets. Highlighted in bold style is the best result.

P L=6 L=8 L=10 L=12 L=14 L=16 L=20
1 22.30(2.88) 26.80(2.95) 26.90(2.93) 25.30(2.91) 24.20(2.84) 23.00(3.01) 22.50(2.99)
2 26.40(3.13) 26.80(3.08) 27.90(3.05) 27.90(2.92) 27.10(2.91) 26.80(2.93) 24.50(2.99)
5 28.70(3.08) 29.70(3.10) 31.90(3.18) 31.80(2.88) 30.00(2.86) 32.00(3.04) 32.20(3.19)
7 28.80(3.26) 29.00(3.00) 30.80(3.09) 30.40(3.01) 31.70(2.82) 32.00(2.99) 34.30(3.12)
10 27.70(3.18) 31.00(3.27) 29.50(2.90) 33.00(3.03) 32.60(2.94) 32.40(3.11) 33.20(3.05)
13 28.90(3.19) 32.20(3.32) 32.10(3.06) 31.80(3.07) 33.30(3.18) 34.70 (2.88) 34.00(2.97)
20 28.60(3.19) 29.90(3.34) 31.50(2.87) 32.30(3.05) 33.10(3.11) 32.10(2.84) 34.30(3.02)

Table 4.3: Average win rate over the 10 stochastic games tested, for different values of population size (P )
and individual length (L). Standard errors in brackets. Highlighted in bold style is the best result.

P L=6 L=8 L=10 L=12 L=14 L=16 L=20
1 48.60(2.20) 49.70(2.13) 49.00(2.01) 48.10(2.25) 44.20(2.00) 44.10(2.12) 43.80(2.22)
2 53.50(2.12) 55.10(2.02) 54.20(2.20) 52.60(2.05) 51.90(2.20) 50.70(2.20) 49.10(2.22)
5 56.40(2.07) 57.30(1.68) 57.40(1.61) 56.70(1.88) 57.60(1.81) 57.90(2.01) 59.90(1.89)
7 57.20(1.72) 56.20(1.85) 58.50(1.64) 58.30(1.90) 58.90(1.63) 57.60(1.95) 59.80(2.00)
10 56.80(1.88) 56.20(1.71) 58.60(1.63) 58.60(1.91) 57.50(1.77) 60.80 (1.79) 60.40(1.93)
13 56.40(1.68) 58.10(1.65) 58.20(1.88) 58.20(1.76) 59.20(1.63) 60.10(1.71) 60.10(1.86)
20 56.90(1.83) 56.50(1.86) 58.00(1.74) 58.70(1.64) 59.80(1.53) 60.50(1.80) 60.70(1.64)

in the games of this framework1. Larger values for either individual length or population size were not con-
sidered due to the limited budget and the complete nature of the experiment (analysis of all combinations);
values above 24 would not allow in certain cases for a full evaluation of even one population.

To expand the analysis of the results, a particular configuration was also tested, using P = 24 and
L = 20. Effectively, given the budget of 480 Forward Model calls, this is an equivalent method of Random
Search (RS). The algorithm only has enough budget to initialise and evaluate the initial population, before
applying any genetic operator. In essence, this configuration evaluates 24 random walks and returns the first
action of the best sequence of moves found.

In order to validate the results, MCTS was also tested on the same set of 20 games, under the same
budget conditions. MCTS has proven to be the dominating technique out of the sample ones provided in the
GVGAI competition, with numerous participants using it as a basis for their entries before adding various
enhancements on top of its vanilla form. The winner of the first edition of the competition in 2014, Adrien
Couëtoux (6), employed an Open Loop technique quite similar to this algorithm.

Each algorithm was run 20 times on each of the 5 levels of the 20 GVGAI games, therefore 100 runs
per game. We consider win rate as the measure for performance and record this for all runs.

4.1.1 Results and Discussion

This section presents and discusses the results obtained from this study. Observations are made attending to
the nature of the game and variations of the population size and individual length. Section 4.1.1 compares

1Using these forward model calls instead of real execution time is more robust to fluctuations on the machine used to run the
experiments, making it time independent and results comparable across different architectures.

54



Figure 4.4: Change of win rate as population size increases, for different individual lengths, in all deter-
ministic games tested. The standard error is shown by the shaded boundary.

performance regarding the use of smaller or larger population, while Section 4.1.1 discusses the impact of
individual length variations. Later, the performance of RHEA is also compared to RS employing different
budgets (Section 4.1.1) and to MCTS (Section 4.1.1) in the implementation supplied with the GVGAI
framework. As the game set used is divided equally between deterministic and stochastic games, an in-
depth analysis is carried out on each game type, although it is not implied the trend would carry through in
other games of the same type. Additionally, a Mann-Whitney non-parametric test was used to measure the
statistical significance of results for each game (p-value = 0.05). Table 4.1 summarises the win rates of all
configurations tested in this study.

Population Variation

Figures 4.4,4.5 shows the change in win rate as population size increases, for L = {6, 10, 14, 20}. Each of
the 20 games that these algorithm configurations were tested on showed different trends when the parameter
values were varied. There is a trend noticed in most of the games, with win rate increasing with the increase
in population size, regardless of the game type (see Table 4.1). Exceptions are for games where the win rate
starts at 100%, therefore leaving no room for improvement (“Aliens” and “Intersection”) or, on the contrary,
when the win rate stays very close to 0% due to outstanding difficulty (“Roguelike”). The winning rate in
the game “Crossfire” reaches a peak at 10% for P = 5, L = 5, compared to 0% for P = 1, which suggests
that games which a priori seem unsolvable, can be approached by exploring more of the solution space
with a larger population - however, there should be a balance between such exploration and the accuracy
of statistics through more generations of the evolutionary algorithm, as shown by win rates dropping at
higher values for some of the games (e.g. “Seaquest”, “Survive Zombies”, “Escape”); these are games
with very dense environments full of sprites the player can interact with, which shows a specific need for
exploration-accuracy balance when the player has many viable options available.

In general, a conclusion that could be drawn from these experiments is that increasing the population
size rarely hinders the performance of the agent. In fact, in some cases it makes the difference between a
very poor and a very successful performance (e.g. in the game “Chopper”). Therefore most games benefit
from a high exploration of the solution space, although we see some games as much more sensitive than
others in choosing the correct balance between the exploration of the two spaces.
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Figure 4.5: Change of win rate as population size increases, for different individual lengths, in all stochastic
games tested. The standard error is shown by the shaded boundary.

Deterministic games The win rate varies within small bounds around certain values in deterministic
games, with a small upwards trend as the population size increases (Figure 4.4). Several games stand out:
“Missile Command” and “Wait for Breakfast” show similar curves and the highest increase in performance,
although these games do not appear to have much in common (Table 2.1). Additionally, “Plaque Attack”
sees much lower performance with L = 20, P = 1 (55%), which then increases to close to 100% for higher
population sizes, showing a clear benefit for exploring both solution space and level space equally during
evolution. Lastly, the game “Escape” sees higher variations in performance, with a dip in win rate for
population size P = 10, especially with individual lengths L = 10 and L = 20. We hypothesise this is due
to this game needing more focus on either level exploration, or solution exploration; both elements are very
important here, but especially conflicting in this puzzle game requiring much precision in the execution of
the action plans. Dissimilarly, “Escape” sees a curve peaking at P = 5, when the individual length is fixed
at L = 6, and slowly decreasing afterwards, again highlighting the high precision required and the higher
sensitivity towards parameter configuration observed in this game.

Stochastic games Regarding stochastic games (Figure 4.5), it is important to separate them based on
their probabilistic elements and their impact on the outcome of the game. For example, the game “Survive
Zombies”, has numerous random NPCs and probabilistic spawn points for all object types, in contrast with
the game “Aliens”, where its stochastic nature comes only from the NPCs dropping bombs in irregular
patterns. In the games “Butterflies”, “Chopper” and “Seaquest” (with larger individual lengths), a big
improvement in terms of winning rate is observed by increasing the population size from 1 (the case in
which there is no tournament) to 5, and this remains stable with larger populations. All of these games
are placed in the same cluster by (3) and they are similar in terms of density of environments and winning
conditions as well. The other games placed in the same cluster, “Missile Command” and “Plaque Attack”
we have similarly observed to show increased performance with larger population sizes. As these are highly
dynamic environments, a higher exploration of the solution space is needed to find viable “good” solutions.

When the length of the individual is fixed to a small value, L = 6, increasing the population size is not
beneficial in all cases, sometimes having the opposite effect and causing a drop in win rate (in “Seaquest”,
from 38% for P = 1 to 25% at the lowest with P = 14). On the contrary, the game “Chopper”, sees a great
improvement (from an average of 41% in population size P = 1 to 95% in population size P = 20). Even

56



Figure 4.6: Change of win rate as individual length increases, for different population sizes, in all deter-
ministic games tested. The standard error is shown by the shaded boundary.

though these games are very similar, the discontinuous rewards in “Seaquest” require a higher exploration of
the level space than “Chopper”, thus they observe differences in performance with small individual lengths.

Individual Variation

Figures 4.6, 4.7 illustrates the change in win rate in each of the 20 games as individual length increases, with
population sizes fixed to P = {1, 5, 10, 20}. The trend of increasing win rates along with the parameter
value increase observed previously is kept here as well when the population size is larger, but the opposite
is true in several games with P = 1, more notably for “Chopper”, “Butterflies” and “Plaque Attack”. These
are the highly dynamic environments previously discussed which feature fairly dense rewards and many
moving sprites - the fact that performance drops along with the increase in individual length suggests that
these environments require prioritisation of solution exploration and accuracy of statistics gathered, rather
than an increased exploration of the level space.

In general, increasing the length of the individual provides better solutions if the size of the population is
high, although the effect of increasing the population size seems to be bigger. This can be clearly observed
in the results reported in table 4.1 and suggests level exploration to be a key part in whether the method is
successful at a game or not.

Deterministic games When there is only one individual in the population, thus no crossover is involved,
the win rate experiences an increase followed by a drop along with the increase of individual length in
“Plaque Attack”, “Missile Command” and “Modality”, which are the 3 deterministic games in one of the
clusters identified in (1) This is due to the fact that the size of the search space of solutions increases expo-
nentially with the individual length and therefore, with few individuals evaluated, the algorithm struggles
to find optimal solutions in these challenging games. This issue can be solved by increasing the population
size, and therefore the exploration of the solution space, as shown in Figure 4.6. For instance, the game
“Plaque Attack”, sees a variation from 68% to 83% to 55% with population size P = 1; while with popu-
lation size P = 5, there is a constant increase from 75% to 94% (and similarly for larger population sizes
as well). Small upwards trends or small variations are observed for the rest of the games, more notably
“Escape” shows again a preference for extreme individual lengths (either very small or very large).
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Figure 4.7: Change of win rate as individual length increases, for different population sizes, in all stochastic
games tested. The standard error is shown by the shaded boundary.

Stochastic games In stochastic games, we see performance dropping for most games when P = 1 and
increasing for larger population sizes. For instance, in “Butterflies”, win rate drops from 85% (L = 6) to
66% (L = 20), when evolving a single individual in the population; this game is particularly interesting
as curves shown in Figure 4.7 highlight the balance between level and solution explorations by peaking
in the middle or for smaller individual lengths. An even bigger difference in win rate can be seen in
“Chopper”, which drops from 40% (L = 6) to 2% (L = 20) with a single individual in the population;
however, this game sees close to 100% win rate when the population size is increased and crossover is
introduced in the evolution process to introduce more ample exploration of the solution space. “Seaquest”,
“Survive Zombies” and “Crossfire” show very similar curves in all cases, with performance increasing
along with individual lengths. These games have loss conditions in common and medium-sized very dense
environments full of threats for the player character: a better exploration of the level space can provide a
better mapping of dangers spread out on the map and therefore better inform the agent when making its
decisions.

Random Search

The version of RHEA using large values for population size and individual length is reminiscent of the
Random Search (RS) algorithm, meaning the algorithm only has time to initialise and evaluate P solutions
of length L and chooses the best one found, without any evolution occurring. We run RS on the same set of
games using P = 24 individuals and simulation depth L = 20, with the same allocated budget of 480 calls
to the forward model. The average win rate over all games is summarised in the last row of Table 4.4.

RS performs no worse than any variant of RHEA studied previously. The vanilla version of RHEA is
not able to explore the search space better than (and, in most cases, not even as good as) RS when the budget
is very limited. In order to test the limits and potential benefits of evolution with a single configuration, an
additional set of experiments was run, with increased FM calls budgets by 2, 3 and 4 times the original
480 call budget (resulting in 960, 1440 and 1920). We run RHEA, MCTS and RS on all games, keeping
individual (or rollout, for MCTS) length to 20. RHEA uses a population of size 1: while this tries out
as many individuals as RS, the difference is in random sampling of the whole individual as opposed to
evolving the initial random solution.

The results, presented in Table 4.4, suggest performance does continue to improve when the algorithm
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Table 4.4: Comparison of win rates achieved by RHEA, RS and MCTS with higher budgets. Win rates for
all games (T), deterministic (D) and stochastic (S). All algorithm use individuals (or iterations for MCTS)
of length 20, as many as possible within the given budget.

Algorithm Budget Win Rate (T) Win Rate (D) Win Rate (S)
RHEA 1920 49.40(1.58) 35.00(2.13) 63.8(2.15)
RHEA 1440 49.30(1.58) 35.20(2.14) 63.4(2.15)
RHEA 960 51.00(1.58) 38.20(2.17) 63.8(2.15)
RHEA 480 46.70(1.58) 33.60(2.11) 59.8(2.19)

MCTS 1920 44.60(1.57) 27.60(2.00) 61.60(2.18)
MCTS 1440 43.10(1.57) 24.00(1.91) 62.20(2.17)
MCTS 960 45.70(1.58) 27.60(2.00) 63.80(2.15)
MCTS 480 41.45(1.89) 22.20(2.45) 60.70(1.34)

RS 1920 48.60(1.58) 36.20(2.15) 61.00(2.18)
RS 1440 49.70(1.58) 36.80(2.16) 62.60(2.16)
RS 960 49.10(1.58) 37.00(2.16) 61.20(2.18)
RS 480 46.60(2.40) 32.90(3.04) 60.30(1.76)

Figure 4.8: Win rate per game for best win rate per game of RHEA, MCTS and RS from experiments
presented in Table 4.4, L = 20.

receives more thinking time, although it stabilises when reaching the highest budget tested. The difference
observed is smaller than that given by the previous experiments presented.

In stochastic games, RHEA obtains similar performance in all higher budgets tested, comparable to
MCTS-960 only and outperforming all others variations tested, including Random Search. For deterministic
games, we note that the performance of MCTS is much below that of both RHEA and RS. RHEA-960
obtains the highest win rate, although this decays as the budget increases further. RS observes a similar
trend and wins more games than RHEA with the highest budgets: this suggests that RHEA can get stuck in
local optimum with only 1 individual evolved over so many iterations. Increasing exploration in the level
space and accuracy of statistics gathered through more iterations might not be enough, but this is a step
forward towards opening the possibility of solving very difficult, or seemingly unsolvable, problems.

Figure 4.8 shows the best win rate of each search method per game - we highlight that these are not the
results of a single method, but the best across all variations for RHEA, MCTS and RS. Given this and the
overall low performance observed in Table 4.4, we note that MCTS actually obtains the highest win rate in
several of the games, such as “Bait”, “Missile Command”, “Plaque Attack” and “Seaquest”. This suggests
a lack of consistency for this algorithm, which gives single RHEA instances the advantage when assessing
overall performance.

Further, we observe Random Search to still be outperforming both RHEA and MCTS in several of
the games (“Crossfire”, “Escape”, ”Modality”), which, together with the very low win rates in half of the
games, speaks to the difficulty of the problems proposed in the GVGAI framework.

RHEA vs MCTS

Table 4.4 also includes the performance of the GVGAI sample MCTS agent. The sample MCTS agent uses
a playout depth of 10, hence the comparisons presented here relate to RHEA configurations with individual
length L = 10. Results show that, although RHEA is significantly worse when its population size is small,
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it outperforms MCTS when the number of individuals per population is increased (P > 5). It is very
interesting to observe that it is possible to create a RHEA agent capable of achieving a higher level of play
than MCTS, which is the base of most dominating algorithms in the GVGAI literature.

In addition, MCTS also falls short when comparing it to RS. Although it appears to be quite similar to
RS in stochastic games, its performance is much worse than RS in deterministic games, becoming com-
parable to the worst configuration of RHEA found during these experiments (population size P = 1 and
individual length L = 20). In Figure 4.8 there are several games where the algorithm achieves very low
scores compared to other algorithms, deterministic games in particular standing out: “Escape”, “Wait for
Breakfast” and the stochastic “Crossfire”. These are games grouped in the same cluster by (1) and feature
puzzle elements and navigation skills, indicating RHEA to be better than MCTS in these types of games
in particular. However, MCTS does outperform the best RHEA results in “Butterflies” and “Seaquest”,
showing MCTS to be better at dealing with highly stochastic and dynamic environments.

4.2 Population Initialisation
The work in this section was published at IEEE CEC 2017:

R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Population Seeding Techniques for Rolling Horizon
Evolution in General Video Game Playing,” in Proceedings of the Congress on Evolutionary Computation,

June 2017, pp. 1956–1963.

While Monte Carlo Tree Search and closely related methods have dominated General Video Game Play-
ing, Section 4.1 has demonstrated the promise of Rolling Horizon Evolutionary Algorithms as an interesting
alternative. However, there is little attention paid to population initialisation (or seeding) techniques in the
setting of general real-time video games. Therefore, we propose the use of different population seeding to
improve the performance of Rolling Horizon Evolution, focused on generating a better than random initial
population from which to start the evolutionary process. We present results of using two methods to seed a
RHEA population: One Step Look Ahead (1SLA) and Monte Carlo Tree Search (MCTS). We test both op-
tions on the 20 games of the General Video Game AI corpus with multiple parameter values for population
size and individual length. An in-depth analysis is carried out between the results of the seeding methods
and the vanilla RHEA. In addition, we discuss a comparison to Monte Carlo Tree Search.

Algorithm 3 1SLA Seeding

1: procedure INITIALIZEPOP(st, n actions, budget)
2: P ← new array
3: for k = 0 : pop size do
4: if k = 0 then
5: I ← new array
6: s← st
7: for j = 0 : ind length do
8: Q(s)← 1SLA(s, n actions, budget)
9: I[j]← arg maxa∈A(s)Q(s, a)

10: s← s.advance(I[j]) . use FM to advance game state given best action
11: budget← budget− 1

12: else
13: I ← mutate(P [0]) . Other individuals are mutations of the first (uniform mutation)
14: evaluate(I, st, budget)
15: P [k]← I

16: return P . Initial population
17:
18: procedure 1SLA(st, n actions, budget)
19: Q(st)← new array
20: for a = 0 : n actions do
21: s′t+1 ← st.advance(a) . Use FM to advance game state given action available
22: budget← budget− 1
23: Q(st, a)← h(s′t+1) . Use Equation 2.1

24: return Q(st) . Q values for all actions available from state st

Therefore, the aim of this section is to explore whether initialising the population of an Evolutionary
Algorithm with individuals better than random produces an improvement in performance, defined as win
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Algorithm 4 MCTS Seeding

1: input: M ← 3 . MCTS node visit count limit
2:
3: procedure INITIALIZEPOP(st, n actions, budget)
4: P ← new array
5: for k = 0 : pop size do
6: if k = 0 then
7: I ← new array
8: A← MCTS(s, n actions, budget/2)
9: for j = 0 : length(A) do

10: I[j]← A[j]

11: for j = length(A) : ind length do
12: I[j]← random(0, n actions)

13: else
14: I ← mutate(P [0]) . Other individuals are mutations of the first (uniform mutation)
15: evaluate(I, st, budget)
16: P [k]← I

17: return P . Initial population
18:
19: procedure MCTS(st, n actions, budget)
20: root← st
21: while budget 6= 0 do
22: node = MCTS select(root) . select node in tree using UCB1 3.3, uses budget
23: exp = MCTS expand(node) . add new child of node to tree, uses 1 FM call
24: s′ = MCTS simulate(exp) . simulation from new node for L steps, to s′, uses L FM calls
25: Q← h(s′) . Use Equation 2.1
26: MCTS backpropagate(exp,Q) . update Q, N , Na for all nodes visited during this iteration
27: A← new array
28: s← st
29: node← arg maxa∈A(root)N(s, a) . get child of root recommendation, most visited
30: while N(s, node) > M and length(A) < ind length do
31: A.add(node)
32: s← s.advance(node) . use FM to advance state to chosen node
33: budget← budget− 1
34: node← arg maxa∈A(node)N(s, a) . continue to best child recommendation

35: return A . Action sequence recommendation

rate (or the ability to solve a variety of different problems), when applied to General Video Game Playing.
This section experiments with the parameters described in Section 3.2.3.

This hypothesis was tested by using the two initialisation methods to extend vanilla RHEA; we will refer
to this algorithm as RHEA-R in this section. Algorithm RHEA-1SLA is a seeding variant which employs a
One Step Look Ahead technique to select a better starting point in the solution space. Algorithm RHEA-
MCTS uses Monte Carlo Tree Search to seed the RHEA for better analysis of the solution space. A fourth
algorithm’s performance was compared against the RHEA variants, an Open Loop Monte Carlo Tree Search
(algorithm MCTS), using the implementation described in Section 2.2.

The effect of the initialisation techniques was tested on different configurations of the RHEA algorithm,
with population sizes (P ) and individual lengths (L) in the following ranges: P = {1, 2, 5, 10, 15, 20},
L = {6, 8, 10, 14, 16, 20}, following only the diagonal of the matrix these values would form. In the case
of algorithm MCTS, its rollout depth was kept the same as the RHEA individual length in order to make the
approaches comparable. The largest value tested was 20 due to the fact that, by allowing half of the budget
for MCTS computation in algorithm RHEA-MCTS, higher values for P and L would result in the algorithm
not being able to evaluate even 1 whole population in the initialisation step.

In order to account for the stochastic aspect of the algorithms used in this study, as well as half of the
games included in the set, each algorithm was run 100 times on each game (20 times on each of the 5
levels available). The budget offered for decision-making in each game tick was 900 FM calls, which is
the average number of FM calls that RHEA-R achieves in 40ms of computational time in the complete 100
games in the GVGAI-1P corpus. Note that this is almost double the budget used in the previous section,
which reflected the average number of FM calls used by MCTS in the real-time GVGAI competition limits.
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4.2.1 1SLA Seeding (Algorithm RHEA-1SLA)
The One Step Look Ahead algorithm is a simple technique which exhaustively searches through the actions
available from the current state and associates each a Q value, corresponding to the approximated value of
the game state reached after performing each action (the value is defined by the same heuristic employed
by RHEA). It then selects for execution the action with the highest Q value.

Algorithm RHEA-1SLA uses the same evolutionary process as RHEA-R described in Chapter 3, but the
first individual in the initial population is the solution recommended by the 1SLA technique. L iterations of
the 1SLA algorithm are performed to obtain a first individual, replacing the initializePop function in
Algorithm 1 as shown in Algorithm 3 (the rest of the algorithm continues as normal). An exhaustive search
is carried out through all of the actions available from the current state, the game state is advanced using the
FM, through the best action found and the process is repeated until either the end of the individual or the
end of the game is reached. In the second case, the rest of the individual is padded with randomly selected
actions. If the population size is bigger than 1, the rest of the individuals are obtained by mutating the first
individual obtained from the 1SLA algorithm.

This technique uses L×N +L×P FM calls from the budget for initialisation and evaluation of initial
population (where N is the number of actions available in the game), and is thought to reduce random
bias (the vanilla algorithm potentially not being able to find the current best action because of the random
seeding) and to provide a better starting point for evolution, guiding the search process towards an initially
promising part of the solution space.

4.2.2 MCTS Seeding (Algorithm RHEA-MCTS)
Algorithm RHEA-MCTS splits the budget received and uses half of it to first run Monte Carlo Tree Search
on the current game state, following the steps described in Section 2.2. The rollout depth is set to the same
value as the individual length in RHEA-R and the UCB1 formula (with constant C taking the value

√
2) is

applied as tree policy (see Equation 3.3).
The first individual in the initial RHEA population is then seeded using the solution recommended by

MCTS. Only the first relevant nodes are selected, by traversing the tree through the most visited actions
(the same method used by algorithm MCTS when selecting its final action to play). A node is relevant if it
has been visited at least M = 3 times. The rest of the individual (if any genes have not received a value)
is padded with randomly chosen legal actions. If the population size is bigger than 1, all other individuals
in the population are mutations of the first, similar to the 1SLA procedure. See Algorithm 4 for details of
the overridden initializePop method from vanilla RHEA shown previously in Algorithm 1 (the rest
of the algorithm continues as normal).

This technique uses budget/2 + length(A) + P × L FM calls from the budget for initialisation and
evaluation of the initial population (where A is the sequence of relevant nodes recommended by MCTS,
with maximum length L), and is thought to also aid in starting evolution from a better than random point
in the solution space, but it would further obtain better statistics as to which initial solution is the best,
as opposed to the greedy approach taken by 1SLA. This results in a budget and accuracy trade-off, which
is highlighted by the decision to choose only nodes visited at least 3 times for the seeding (thus nodes
which do have some statistics built up through multiple iterations). However, the individuals resulting from
this seeding technique are also more likely to contain more variation from the random actions at the end,
depending on how MCTS uses its computation time to expand the tree.

4.2.3 Results and Discussion
The analysis in this section uses a two-tailed Mann-Whitney non-parametric U test to measure the statistical
significance of the results for each game (p-value = 0.05), applied to two performance indicators: win rate
and game score achieved.

In general, both seeding techniques improve the performance of the vanilla algorithm much more when
the population size and individual length are small than when they increase. This is due to less generations
being evolved the larger the parameter values, reducing the impact of the seeding that can be observed. We
have previously seen that very large population sizes and individual lengths, going to Random Search (RS)
within budget limits, emerged as the best options. Random sampling of entire individuals, rather than the
focused initial population offered by the seeding methods, are better at exploring more of the solution space
and find those solutions that evolution could reach after several iterations, if available. However, the fact
that performance is increased when several generations are evolved suggests that this focused start is indeed
better for evolving action sequences - but not necessarily for finding the optimum.

Table 4.9 presents an overall win rate comparison between the two seeding variants and vanilla RHEA,
across all games and configurations, while Figures 4.9,4.10 show a breakdown of win rate per game for
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all methods tested. The bottom of Table 4.9 sums up the number of games in which one algorithm was
significantly better than the other two, leading to a total of unique games where a significant improvement
was noticed, in all configurations tested. Table 4.5 shows complete results for configuration P = 1, L = 6.

4.2.4 Overall Seeding Comparison
The general trend observed in this study is that the MCTS seeding variant performs significantly better than
both algorithms RHEA-R and RHEA-1SLA in 8 unique games for win rate and 13 unique games for scores
across all configurations, while being significantly worse than either of the other two in only 4 games for
both win rate and score.

It is worth noting that there were a reduced number of games in which RHEA-R or RHEA-1SLA turned
out to be consistently significantly better than RHEA-MCTS: “Escape” and “Wait for Breakfast” for both win
rate and score and “Intersection” for score only. This is due to the traditional poor performance of MCTS in
these games, also observed in Section 4.1, which is improved in the seeded algorithm over MCTS; evolution
generally outperforms MCTS in games that require more careful planning of precise sequences of actions.

In addition, the MCTS seeding shows a steady improvement in several games. The win rates in the
games “Aliens”, “Butterflies” and “Chopper” see an increase to very close to 100% in all configurations.
These are games presenting highly dynamic environments in which accurate statistics of which actions are
good are important. The biggest improvement is observed in “Chopper”, where the RHEA-R win rate for
the smallest configuration (P = 1, L = 6) is only 26% to begin with (p� 0.0001).

This leads to the conclusion that identifying the type of game being played and applying the correct
algorithm seeding and parameters through a meta-heuristic would be highly beneficial to a general AI agent.
However, there are also games such as “Dig Dug”, “Lemmings” and “Roguelike” in which the win rate for
all algorithms remains at 0%, these being particularly difficult games which require greater exploration of
both solution and level space that neither technique can provide.

It is interesting to further observe change in win rate along with the increase in population size and
individual length for all methods, as showcased in Figures 4.9,4.10. For most games we see an upwards
trend in win rate when no seeding is used (RHEA-R using default random initialisation), which is consistent
with results presented in Section 4.1. However, the story is different for the seeded methods, which often
see the opposite (“Chopper” for 1SLA seeding and “Plaque Attack”, for example). This is not a linear
drop, however, the curves for the different games (and different methods as well) peaking at different
points, although most of these peaks happen when population size and individual length values are small.
Some notable exceptions are “Plaque Attack”, “Modality”, “Survive Zombies”, “Seaquest” and “Missile
Command” which prefer medium-high values for the parameters instead - all of these games are clustered
together by (1) and they are mostly very dense and dynamic environments; we have seen previously that
evolution can be tricked to evolve in the wrong direction in these types of games, thus it is not surprising that
the algorithm struggles to find better solutions than the initial suggestions offered by the seeding methods.

Figure 4.9: Change of win rate as population size and individual length increase, in all deterministic games
tested. The standard error is shown by the shaded boundary.

Pair-wise Seeding Comparison

Pair-wise significance comparison between algorithms RHEA-R, RHEA-1SLA and RHEA-MCTS on all the
configurations tested can be observed in Tables 4.6, 4.7 and 4.8. The values represent the number of games
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Figure 4.10: Change of win rate as population size and individual length increase, in all stochastic games
tested. The standard error is shown by the shaded boundary.

Table 4.5: Win rate and average score achieved (plus standard error) in 20 different games with configura-
tion P = 1 and L = 6. Bold font shows the algorithm that is significantly better than both others in either
victories or score.

Initialisation Game Win Rate (%) Score Game Win Rate (%) Score
Random

Aliens
87.00 (3.36) 59.33 (1.62)

Infection
98.00 (1.40) 11.09 (0.61)

1SLA 97.00 (1.71) 61.95 (1.29) 96.00 (1.96) 11.84 (0.71)
MCTS 100.00 (0.00) 68.87 (1.52) 97.00 (1.71) 15.25 (0.86)

Random
Bait

4.00 (1.96) 2.10 (0.29)
Intersection

79.00 (4.07) −3.03 (1.16)
1SLA 4.00 (1.96) 3.28 (0.51) 100.00 (0.00) 4.25 (0.69)
MCTS 6.00 (2.37) 3.41 (0.41) 100.00 (0.00) 1.00 (0.00)

Random
Butterflies

78.00 (4.14) 33.12 (1.60)
Lemmings

0.00 (0.00) −9.11 (0.37)
1SLA 90.00 (3.00) 32.48 (1.65) 0.00 (0.00) −0.11 (0.05)
MCTS 95.00 (2.18) 30.48 (1.46) 0.00 (0.00) −0.03 (0.02)

Random
Camel Race

4.00 (1.96) −0.76 (0.05)
Missile Command

35.00 (4.77) 1.47 (0.41)
1SLA 3.00 (1.71) −0.77 (0.05) 36.00 (4.80) 1.72 (0.43)
MCTS 5.00 (2.18) −0.75 (0.05) 63.00 (4.83) 4.65 (0.48)

Random
Chase

1.00 (0.99) 2.16 (0.20)
Modality

23.00 (4.21) 0.23 (0.04)
1SLA 2.00 (1.40) 2.14 (0.22) 28.00 (4.49) 0.28 (0.04)
MCTS 9.00 (2.86) 3.20 (0.24) 30.00 (4.58) 0.30 (0.05)

Random
Chopper

26.00 (4.39) 2.39 (0.62)
Plaque Attack

75.00 (4.33) 35.37 (1.60)
1SLA 48.00 (5.00) 4.63 (0.78) 70.00 (4.58) 33.05 (1.75)
MCTS 100.00 (0.00) 16.99 (0.28) 91.00 (2.86) 47.17 (1.87)

Random
Crossfire

0.00 (0.00) −1.01 (0.01)
Roguelike

0.00 (0.00) 1.60 (0.37)
1SLA 2.00 (1.40) −0.89 (0.08) 0.00 (0.00) 3.54 (0.52)
MCTS 4.00 (1.96) 0.18 (0.10) 0.00 (0.00) 5.44 (0.62)

Random
Dig Dug

0.00 (0.00) 5.66 (0.76)
Sea Quest

33.00 (4.70) 903.56 (127.82)
1SLA 0.00 (0.00) 9.15 (0.77) 37.00 (4.83) 1130.36 (137.78)
MCTS 0.00 (0.00) 14.93 (1.17) 58.00 (4.94) 1807.79 (177.44)

Random
Escape

15.00 (3.57) −0.64 (0.07)
Survive Zombies

23.00 (4.21) 0.92 (0.38)
1SLA 36.00 (4.80) 0.34 (0.05) 29.00 (4.54) 0.92 (0.39)
MCTS 0.00 (0.00) 0.00 (0.00) 40.00 (4.90) 2.27 (0.41)

Random
Hungry Birds

2.00 (1.40) 2.00 (1.40)
Wait for Breakfast

35.00 (4.77) 0.35 (0.05)
1SLA 2.00 (1.40) 2.00 (1.40) 65.00 (4.77) 0.65 (0.05)
MCTS 3.00 (1.71) 4.60 (1.85) 9.00 (2.86) 0.09 (0.03)

(out of 20 total) in which one algorithm was significantly better than the other regarding victories, as well
as scores, in brackets. The totals sum up the unique games in which one algorithm was significantly better
than the other across all configurations (maximum of 20).

RHEA-R vs RHEA-1SLA The One Step Look Ahead seeding appears to produce the best results where
the RHEA parameter values are very small (improvements in 6 games for win rate and 7 games for score,
see Table 4.6). However, a change is noticed halfway through the table where the seeding variant actu-
ally becomes significantly worse than the vanilla version in up to 5 games for win rate and 10 games for
score. On average, across all configurations tested, the 1SLA seeding appears to be worse than the baseline
algorithm.
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Table 4.6: Pairwise significance comparison between vanilla RHEA and 1SLA-seeded RHEA.

Initialisation P = 1, L = 6 P = 2, L = 8 P = 5, L = 10 P = 10, L = 14 P = 15, L = 16 P = 20, L = 20 Total
Random 1 (1) 0 (0) 0 (1) 3 (5) 5 (8) 5 (10) 8 (11)

1SLA 6 (7) 1 (5) 0 (4) 0 (1) 0 (2) 0 (2) 6 (8)

Table 4.7: Significance comparison between vanilla RHEA and MCTS-seeded RHEA.

Initialisation P = 1, L = 6 P = 2, L = 8 P = 5, L = 10 P = 10, L = 14 P = 15, L = 16 P = 20, L = 20 Total
Random 2 (1) 2 (3) 2 (3) 4 (3) 2 (4) 2 (4) 4 (5)
MCTS 10 (16) 6 (11) 4 (7) 1 (5) 2 (5) 0 (5) 12 (16)

Table 4.8: Significance comparison between 1SLA-seeded RHEA and MCTS-seeded RHEA.

Initialisation P = 1, L = 6 P = 2, L = 8 P = 5, L = 10 P = 10, L = 14 P = 15, L = 16 P = 20, L = 20 Total
1SLA 2 (3) 2 (4) 2 (3) 3 (4) 2 (4) 2 (4) 3 (5)
MCTS 6 (11) 8 (11) 4 (9) 6 (12) 6 (11) 6 (11) 10 (13)

A study of the complete matrix of small parameter values (P = {1, 2, 5}, L = {6, 8, 10}), where the
difference in performance is most observed, reveals that the variance in individual length and population
size have different effects. On the one hand, increasing the size of the population results in a decrease in the
number of games RHEA-1SLA is significantly better in when compared to RHEA-R, which is due to the fact
that the seeding variant explores the search space much less, with only one optimal solution mutated for all
of its individuals. On the other hand, the performance is proportional to the individual length, suggesting
that the directed search provided by 1SLA is more effective in cases with big L values compared to RHEA-
R’s random sampling.

For configuration P = 20, L = 20, the biggest significance is noticed in “Chopper”, in which RHEA-
1SLA reduces the baseline algorithm’s performance from 98% to 13% (p � 0.0001). However, RHEA-
1SLA succeeds in gaining a higher score in the low-scoring game “Intersection”, increasing from 2.24
points to 11.34.

RHEA-R vs RHEA-MCTS With parameter values smaller than P = 10, L = 14, the MCTS seeding is
significantly better than the vanilla version, the difference being most noticed, again, when the parameter
values are smallest. The decrease in performance in larger values is thought to be caused by the rollout depth
of MCTS exceeding the optimal range observed in GVGAI games (10 − 12). Across all configurations,
MCTS seeding improves the baseline algorithm in 60% of the games for win rate and 80% for score, see
Table 4.7.

Comparing the complete matrix of small parameter values shows that the population size has a much
greater negative effect on the performance than the individual length. The lack of impact of the individual
length can be explained by the proportional increase in the rollout length of MCTS, therefore keeping results
comparable. However, the decrease observed with population size increase suggests that the algorithm fails
to explore the solution search space as well as RHEA, therefore balancing of other parameters should be
considered.

For configuration P = 5, L = 10, there are two interesting games to look in-depth at. In the game
“Seaquest”, RHEA-MCTS increases the win rate of the baseline algorithm from 31% to 68% (p� 0.0001)
and the score from 1225.68 average points to 2485.43. Another big effect size is perceived in “Camel
Race”, in which, although the win rates remain small, there is an increase from 2% to 8% (p = 0.026).
Both games highly benefit from the balanced exploration and exploitation provided by the MCTS solution
which stands at the base of the evolutionary process.

RHEA-1SLA vs RHEA-MCTS When the two seeding techniques are compared directly, RHEA-MCTS
achieves a consistently better performance in 50% of the games for win rate and 65% for scores, whereas
being consistently significantly worse in the games “Escape” and “Wait for Breakfast” for both win rate and
scores and game “Intersection” for score only, similar to previous observation (see Table 4.8. In “Chopper”,
RHEA-1SLA with configuration P = 2, L = 8 achieves a 76% win rate, while RHEA-MCTS increases it
to 100% (p� 0.0001). In addition, significant improvements with large effect sizes can also be noticed in
the games “Missile Command” (p = 0.016) and “Survive Zombies” (p = 0.033). However, in “Escape”,
in which the MCTS algorithm cannot find a solution, the win rate drops from 30% for RHEA-1SLA to 0%
for RHEA-MCTS (p� 0.0001).
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MCTS Comparison

Although the results indicate algorithm RHEA-MCTS to be the best in this setting, an analysis against a
pure Monte Carlo Tree Search technique was carried out to validate the findings. This comparison can be
seen in Table 4.10, in which the values show the number of games in which one algorithm was significantly

Table 4.9: Average of victories in all 20 games. Bold style indicates a significantly better average win
rate than both the other two seeding variants. If the * symbol is present additionally, it indicates instead a
significantly better average score than both the other two seeding variants. The bottom of the table adds up
the number of games in which the algorithm was significantly better than the other two variants in average
victories, with counts for games with significantly better average scores in brackets. The non-parametric
Wilcoxon signed-rank test (p-value < 0.05) was used to test significance.

Game Initialisation P = 1, L = 6 P = 2, L = 8 P = 5, L = 10 P = 10, L = 14 P = 15, L = 16 P = 20, L = 20 Total

0
Random 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

1SLA 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
MCTS 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

1
Random 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

1SLA 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00)* 0.00 (0.00)
MCTS 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)* 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

2
Random 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

1SLA 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
MCTS 0.00 (0.00) 0.00 (0.00)* 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)* 0.00 (0.00)

3
Random 26.00 (4.39) 74.00 (4.39) 95.00 (2.18) 99.00 (0.99) 97.00 (1.71) 98.00 (1.40) 81.5 (11.74)

1SLA 48.00 (5.00) 76.00 (4.27) 72.00 (4.49) 33.00 (4.70) 24.00 (4.27) 13.00 (3.36) 44.33 (8.43)
MCTS 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.00 (0.99)* 100.00 (0.00) 99.00 (0.99)* 99.67 (0.16)

4
Random 0.00 (0.00) 2.00 (1.40) 2.00 (1.40) 7.00 (2.55) 9.00 (2.86) 8.00 (2.71) 4.67 (1.39)

1SLA 2.00 (1.40) 3.00 (1.71) 4.00 (1.96) 4.00 (1.96) 3.00 (1.71) 6.00 (2.37) 3.67 (0.33)
MCTS 4.00 (1.96)* 1.00 (0.99)* 2.00 (1.40)* 0.00 (0.00)* 5.00 (2.18)* 3.00 (1.71)* 2.50 (0.76)

5
Random 1.00 (0.99) 2.00 (1.40) 7.00 (2.55) 6.00 (2.37) 8.00 (2.71) 6.00 (2.37) 5.00 (1.33)

1SLA 2.00 (1.40) 4.00 (1.96) 4.00 (1.96) 1.00 (0.99) 4.00 (1.96) 3.00 (1.71) 3.00 (0.61)
MCTS 9.00 (2.86) 12.00 (3.25) 8.00 (2.71)* 11.00 (3.13) 11.00 (3.13)* 11.00 (3.13) 10.33 (1.28)

6
Random 4.00 (1.96) 7.00 (2.55) 2.00 (1.40) 7.00 (2.55) 5.00 (2.18) 7.00 (2.55) 5.33 (0.77)

1SLA 3.00 (1.71) 3.00 (1.71) 3.00 (1.71) 7.00 (2.55) 7.00 (2.55) 2.00 (1.40) 4.16 (0.83)
MCTS 5.00 (2.18) 5.00 (2.18) 8.00 (2.71) 5.00 (2.18) 4.00 (1.96) 5.00 (2.18) 5.33 (0.68)

7
Random 15.00 (3.57) 32.00 (4.66) 33.00 (4.70) 44.00 (4.96) 42.00 (4.94) 39.00 (4.88) 34.16 (4.56)

1SLA 36.00 (4.80) 30.00 (4.58)* 33.00 (4.70) 31.00 (4.62) 33.00 (4.70) 37.00 (4.83) 33.33 (1.11)
MCTS 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.99) 0.16 (0.16)

8
Random 2.00 (1.40) 4.00 (1.96) 3.00 (1.71) 1.00 (0.99) 3.00 (1.71) 3.00 (1.71) 2.67 (0.42)

1SLA 2.00 (1.40) 0.00 (0.00) 4.00 (1.96) 2.00 (1.40) 1.00 (0.99) 1.00 (0.99) 1.67 (0.53)
MCTS 3.00 (1.71)* 5.00 (2.18) 4.00 (1.96) 6.00 (2.37) 7.00 (2.55) 4.00 (1.96) 4.83 (0.57)

9
Random 4.00 (1.96) 5.00 (2.18) 9.00 (2.86) 8.00 (2.71) 11.00 (3.13) 5.00 (2.18) 7.00 (1.12)

1SLA 4.00 (1.96) 5.00 (2.18) 4.00 (1.96) 5.00 (2.18) 10.00 (3.00) 5.00 (2.18) 5.5 (1.88)
MCTS 6.00 (2.37) 6.00 (2.37) 7.00 (2.55) 7.00 (2.55) 5.00 (2.18) 6.00 (2.37) 6.16 (0.33)

10
Random 35.00 (4.77) 65.00 (4.77) 68.00 (4.66) 76.00 (4.27) 71.00 (4.54) 72.00 (4.49) 64.50 (6.05)

1SLA 65.00 (4.77) 65.00 (4.77) 59.00 (4.92) 72.00 (4.49) 65.00 (4.77) 69.00 (4.62) 65.83 (2.12)
MCTS 9.00 (2.86) 11.00 (3.13) 29.00 (4.54) 21.00 (4.07) 24.00 (4.27) 11.00 (3.13) 17.50 (3.13)

11
Random 23.00 (4.21) 39.00 (4.88) 43.00 (4.95) 40.00 (4.90) 45.00 (4.97) 49.00 (5.00) 39.83 (4.15)

1SLA 29.00 (4.54) 39.00 (4.88) 32.00 (4.66) 29.00 (4.54) 33.00 (4.70) 39.00 (4.88) 33.50 (1.68)
MCTS 40.00 (4.90)* 52.00 (5.00) 49.00 (5.00) 41.00 (4.92)* 43.00 (4.95) 45.00 (4.97) 45.00 (1.92)

12
Random 23.00 (4.21) 26.00 (4.39) 28.00 (4.49) 26.00 (4.39) 29.00 (4.54) 31.00 (4.62) 27.16 (0.87)

1SLA 28.00 (4.49) 22.00 (4.14) 23.00 (4.21) 25.00 (4.33) 21.00 (4.07) 32.00 (4.66) 25.16 (1.02)
MCTS 30.00 (4.58) 25.00 (4.33) 26.00 (4.39) 28.00 (4.49) 24.00 (4.27) 26.00 (4.39) 26.50 (0.88)

13
Random 35.00 (4.77) 46.00 (4.98) 51.00 (5.00) 57.00 (4.95) 58.00 (4.94) 59.00 (4.92) 51.16 (3.51)

1SLA 36.00 (4.80) 47.00 (4.99) 49.00 (5.00) 39.00 (4.88) 43.00 (4.95) 43.00 (4.95) 42.83 (2.02)
MCTS 63.00 (4.83) 62.00 (4.85) 59.00 (4.92) 67.00 (4.70) 69.00 (4.62) 64.00 (4.80) 64.00 (1.60)

14
Random 75.00 (4.33) 79.00 (4.07) 89.00 (3.13) 96.00 (1.96) 92.00 (2.71) 96.00 (1.96)* 87.83 (3.24)

1SLA 70.00 (4.58) 72.00 (4.49) 85.00 (3.57) 89.00 (3.13) 83.00 (3.76) 82.00 (3.84) 80.16 (3.27)
MCTS 91.00 (2.86) 89.00 (3.13) 83.00 (3.76) 85.00 (3.57) 91.00 (2.86) 97.00 (1.71) 89.33 (1.32)

15
Random 33.00 (4.70) 42.00 (4.94) 31.00 (4.62) 44.00 (4.96) 58.00 (4.94) 59.00 (4.92) 44.50 (4.16)

1SLA 37.00 (4.83) 44.00 (4.96) 48.00 (5.00) 34.00 (4.74) 52.00 (5.00) 43.00 (4.95) 43.00 (2.90)
MCTS 58.00 (4.94) 51.00 (5.00) 68.00 (4.66) 50.00 (5.00) 56.00 (4.96) 63.00 (4.83) 57.67 (2.69)

16
Random 98.00 (1.40) 98.00 (1.40) 96.00 (1.96) 98.00 (1.40) 96.00 (1.96) 98.00 (1.40) 97.33 (0.57)

1SLA 96.00 (1.96) 97.00 (1.71) 97.00 (1.71) 98.00 (1.40) 97.00 (1.71) 99.00 (0.99) 97.33 (0.33)
MCTS 97.00 (1.71)* 100.00 (0.00)* 94.00 (2.37)* 100.00 (0.00) 97.00 (1.71) 100.00 (0.00) 98.00 (1.00)

17
Random 87.00 (3.36) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 97.83 (2.16)

1SLA 97.00 (1.71) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.50 (0.50)
MCTS 100.00 (0.00) 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)

18
Random 78.00 (4.14) 83.00 (3.76) 94.00 (2.37) 96.00 (1.96) 91.00 (2.86) 92.00 (2.71) 89.00 (2.94)

1SLA 90.00 (3.00) 90.00 (3.00) 90.00 (3.00) 87.00 (3.36) 84.00 (3.67) 87.00 (3.36) 88.00 (1.04)
MCTS 95.00 (2.18) 99.00 (0.99) 100.00 (0.00) 99.00 (0.99) 98.00 (1.40) 97.00 (1.71) 98.00 (0.76)

19
Random 79.00 (4.07) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 96.50 (3.50)

1SLA 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)* 100.00 (0.00)
MCTS 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Total
Random 0 (0) 0 (0) 0 (0) 2 (0) 0 (0) 0 (1) 2 (1)

1SLA 2 (3) 0 (2) 0 (1) 0 (2) 0 (2) 0 (2) 2 (4)
MCTS 6 (11) 6 (10) 3 (7) 0 (5) 2 (4) 0 (4) 8 (13)
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Table 4.10: Significance comparison of algorithms RHEA-R, RHEA-MCTS and MCTS in all 20 games and
all configurations.

Algorithm P = 1, L = 6 P = 2, L = 8 P = 5, L = 10 P = 10, L = 14 P = 15, L = 16 P = 20, L = 20 Total
RHEA-R 2 (1) 2 (3) 2 (3) 2 (3) 2 (4) 2 (4) 3 (4)

RHEA-MCTS 0 (2) 1 (1) 0 (3) 0 (0) 0 (1) 0 (1) 1 (7)
MCTS 2 (3) 0 (0) 0 (1) 1 (3) 0 (3) 0 (3) 3 (7)

Improved
Seeding 10 (15) 4 (10) 2 (4) 0 (5) 2 (5) 0 (4) 10 (15)

Figure 4.11: Win rate per game for RHEA-R, MCTS, RHEA-MCTS and RHEA-1SLA. * symbol shows
the best result per game over all configurations tested for that algorithm and therefore does not reflect the
performance of a single algorithm.

better than both the other MCTS variant and vanilla RHEA in win rate (and scores, in brackets), adding up
to a total of unique games across all configurations.

The bottom line of Table 4.10 shows the number of games in which, although RHEA-MCTS was not the
best algorithm, the addition of MCTS seeding to RHEA made it in turn better than the baseline algorithm.
This takes into account the cases where RHEA-MCTS and MCTS were not significantly better than each
other, but they still achieved a higher performance than RHEA-R, for a more complete picture.

While RHEA-R consistently obtains significantly more victories and higher scores in its best games
(“Escape”, “Wait for Breakfast” and “Intersection”), it must be highlighted that the apparent low perfor-
mance of RHEA-MCTS is due to it not always being significantly better than MCTS. For the direct compar-
ison between RHEA-MCTS and RHEA-R, the reader is referred to Table 4.7. In this case, the MCTS seeding
variant shows improvement over a wider range of games, adding up to 50% games in which a larger win
rate was observed and 75% games in which the score increased. The conclusion emerging is that MCTS
seeding has a highly beneficial effect, especially in low RHEA parameter values, and further exploration of
its advantages is encouraged.

Finally, Figure 4.11 shows an overall picture of the algorithms tested in this section, aggregating results
over all configurations per algorithm and showcasing the best result per algorithm, for each game. MCTS
is rarely better than the vanilla RHEA or the MCTS-seeded RHEA, and vanilla RHEA is further best on
most games. However, there are a few interesting cases to note: in the games “Chase”, “Survive Zombies”
and “Seaquest”, the MCTS-seeded variant appears to combine the benefits of both RHEA and MCTS the
best so that it obtains results better than either of the other methods (and, in fact, significantly improves the
quality of the initial solution recommended by MCTS through evolution). These games do not appear to
have much in common (see Table 2.1), therefore further investigation is encouraged into the reasons behind
this hybrid doing very well in specific cases. This finding accentuates the need for highly adaptive methods
that can make use of the strengths of different approaches to succeed in unique circumstances.

4.3 Hybrids
The work in this section was published at IEEE CIG 2017:

——, “Rolling Horizon Evolution Enhancements in General Video Game Playing,” in Proceedings of
IEEE Conference on Computational Intelligence and Games, Aug 2017, pp. 88–95.

This section aims to explore four enhancements to the vanilla RHEA. Some of the enhancements pre-
sented here have been seen in the literature before, either in a General Video Game Playing (GVGP) setting,
or in some other domains. However, they have been previously employed under different conditions, heuris-
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tics and sets of games, and sometimes combined with other techniques. It is therefore very hard to deduct
(if not impossible) which ones of these approaches work well in isolation, which ones do not produce im-
provements in the vanilla form of the algorithm, if decoupled from the heuristics used, and which ones
could work better if put together in combination.

The objective of this section is to formalise and provide a fair analysis on these enhancements. They are
all tested in isolation, but also combinations between them are drawn in order to identify potentially good
synergies. Furthermore, they are evaluated under the same testing circumstances, provided with a common
heuristic to evaluate states visited during search, in the 20 GVGAI games carefully selected to serve as a
good representative set of the whole GVGAI corpus.

The baseline algorithm is Vanilla RHEA. The population initialisation is kept pseudo-random (each
individual receiving random actions for each gene, in the range 0 − (N − 1), where N is the number of
legal actions in the current game state (therefore each gene corresponds to one in-game action).

Breeding occurs P −E times in one generation, whereE represents elitism (the chosen method for pro-
moting the best individuals, unchanged, to the next generation. E = 1 for all cases) and P population size.
Each new individual in a subsequent generation is the product of uniform crossover between individuals
from the previous generation, selected through tournament (size 2), and mutation (random).

The heuristic used to evaluate game states and determine individual fitness simply returns the game
score, dynamically normalised between (0, 1), 1 for winning and 0 for losing. The process of evaluating an
individual is as described in Section 3.1.

In the rest of this section, the term “configurations” will refer to different values for the population
size (P ) and individual length (L) parameters and the term “variants” will refer to RHEA algorithms with
enhancements added to the vanilla version. If more than one enhancement is used, the term “hybrid” may
be used instead. Several variations of the vanilla RHEA algorithm were analysed on a set of 20 games,
playing 20 times on all 5 levels of each game (therefore 100 runs per game per algorithm). Additionally, 4
different core parameter configurations (P -L = {1-6, 2-8, 5-10, 10-14}) were used for all algorithms, in
order to observe the effect of the enhancements across a range of parameter values, comparable with the
results presented in previous sections.

The budget given to each algorithm was restricted to 900 FM calls (the average obtained by vanilla
RHEA in the current GVGAI corpus), so as to eliminate bias from variations in the machine used to run the
experiments. The maximum configuration tested was 10-14 due to the fact that if it were larger, by adding

Algorithm 5 RHEA Hybrids Main

1: procedure MAIN(st, budget)
2: k ← 0
3: if t = 0 then
4: Pk ← initializePop(budget)
5: initialize bandits . New bandit for population, new bandit for each gene
6: initialize stat tree . Empty tree with root from st
7: else
8: Pk ←SHIFT(st, budget, Pk[t− 1]) . Shift population from previous tick
9: shift bandits . Bandit for action played removed, new bandit for last action

10: shift stat tree . Root becomes previous action recommended
11: while budget 6= 0 do
12: Pk+1.add( first E individuals from Pk)
13: O ← new array
14: for j = 0 : pop size do
15: p1, p2 ← selectParents(Pk)
16: I ′ ← cross(p1, p2)
17: I ′, j′, a′ ←BANDITMUTATE(O) . Bandit mutation
18: f = evaluate(I ′, st, budget)
19: update(ind bandit, j′, f) . Update chosen ind bandit arm Q, N , N a values
20: update(gene bandit[j′], a′, f) . Update chosen gene bandit[j’] arm Q, N , N a values
21: O[j]← I ′

22: pool← Pk +O
23: sort(pool)
24: Pk+1.add( first P − E individuals from pool)
25: k ← k + 1

26: at ← arg maxa∈stat tree.children[root]N(s, a) . Return most visited action from the stats tree
27: return at
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Algorithm 6 RHEA Hybrids Functions

1: procedure SHIFT(st, budget, Pt−1)
2: P ← new array
3: n actions← st.nActionsAvailable()
4: for k = 0 : pop size do
5: I ← new array
6: for j = 0 : ind length− 1 do
7: I[j]← Pt−1[k][j + 1]

8: I[ind length− 1] = random(0, n actions)
9: evaluate(I, st, budget)

10: P [k]← I

11: return P . Shifted previous population
12:
13: procedure BANDITMUTATE(I , s)
14: n actions← s.nActionsAvailable()
15: . Choose gene in individual to mutate with highest UCB value, Equation 3.3
16: j′ ← arg maxj∈I.genes ind bandit.UCB(j)
17: . Choose new value for gene with highest UCB value, Equation 3.3
18: a′ ← arg maxa∈n actions gene bandit.UCB(a)
19: I[j′] = a′

20: return I, j’, a’
21:
22: procedure EVALUATE(I , st, budget)
23: for j = 0 : ind length do
24: st+j+1 ← st+j .advance(I[j])
25: budget← budget− 1

26: f ←MCSIMULATION(budget, st+ind length) . Runs MC simulation from last state reached
27: stat tree.UPDATE(I, f) . Adds nodes to tree, or updates Q, N , N a for all actions in individual
28: return f
29:
30: procedure MCSIMULATION(budget, s)
31: n actions← s.nActionsAvailable()
32: f ← new array
33: for r = 0 : R do
34: s′ ← s.copy
35: for j = 0 : sim length do
36: s′ ← s′.advance(random(0, n actions))
37: budget← budget− 1

38: f [r]← h(s′) . Use Equation 2.1
39: return f

rollouts, the limited budget would not allow for even one full population to be evaluated in one game tick.

There are two main parts to the experiments run for this study, the second of which includes a compar-
ison with MCTS. The results presented in Section 4.3.1 correspond to this setup. Algorithm 5 shows the
modified main function for RHEA with all modifications introduced, and Algorithm 6 shows the modified
function for evaluating individuals, as well as additional functionality introduced by the modifications.

The first part of the experiments explores the first three enhancements described in Section 3.1 (bandit-
based mutation, referred to as EA-bandit; stats tree, referred to as EA-tree; and shift buffer, referred to as
EA-shift) in isolation, as well as combinations of them, resulting in 8 variants. The best variants in all
configurations (4 in total) were kept for the second part.

The second part of experiments looks at the last enhancement (rollouts, referred to as EA-roll, see
Section 4.3.1), added to the 4 variants promoted previously. Three different values for rollout repetitions
were considered: R = {1, 5, 10}. This resulted in 8 algorithms (with and without rollouts) analysed in this
section for each rollout length, therefore 24 per configuration. Finally, the algorithms were compared with
MCTS in order to validate their quality on a larger scale in GVGAI.
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4.3.1 Results and Discussion
The results presented in this section are based on both rankings following the Formula-1 (F1) point system
and a significance comparison in win rate or scores, using a Mann-Whitney non-parametric U test, with
p-value < 0.05. The F1 point system is used in GVGAI as a measure of generality: all algorithms are
ranked on each of the games played based on win rate (and scores, then game ticks for tie breakers; highest
values first), then each rank receives an associated number of points: first receives 25 points, second 18,
third 15, then 12, 10, 8, 6, 4, 2 and 0 for all remaining algorithms. The sum of points across all games
played decides the overall ranking of algorithms on a given game set and is meant to promote algorithms
that perform well in the most games, as opposed to those that are very good in some, but the worst in others.
It is important to highlight that this generality measure is highly dependent on the approaches a particular
algorithm is compared against and does not paint an absolute picture of an algorithm’s overall performance.

Bandit, tree, shift

Overall, in the first part of experiments, the shift buffer appears to offer the biggest improvement in perfor-
mance, while the bandit-based mutation is in many cases significantly worse than all other algorithms. If all
variants across all configurations were to be compared and ranked according to F1 points, EA-shift (5-10)
would be in first place, with 213 points and 40.05% average win rate, while EA-bandit (1-6) would be last,
with 0 points and 29.65% win rate. The specific results for configuration 5-10 are depicted in Table 4.11.

The effect of increasing the population size and individual length is noticed in most variants. Although
the win rate sees an overall increase proportional to parameter values, the algorithm ranking does not remain
consistent.

Figure 4.12 presents the significant wins of all variants in all configurations, counting for each pair in
how many games the row algorithm was significantly better than the column one; the darker the colour,
the higher the game count. A dark row would therefore signify an algorithm better than the others in most
games, while a dark column would mean the algorithm performed worse. It is worth observing how bandit
hybrids feature dark columns in most configurations, as well as how EA-shift and EA-tree-shift rows stand
out as the best.
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Figure 4.12: Win percentage for all configurations. The colour bar denotes in how many unique games row
was significantly better than column. Legend: A = Vanilla, B = EA-shift, C = EA-tree, D = EA-tree-shift,
E = EA-bandit, F = EA-bandit-shift, G = EA-bandit-tree, H = EA-bandit-tree-shift

An interesting game to look at in more detail is game 60 (“Missile Command”), where no significance
can be observed in low configurations, but in higher ones EA-shift is significantly better than vanilla in win
rates and all shift hybrids are better than vanilla in scores; EA-bandit is significantly worse than both shift
and tree hybrids. In the game “Escape”, all variants are significantly better than vanilla in both win rates
and scores, except for tree hybrids, in low configurations, while no significance is observed at the opposite
end of the spectrum.

In most games, the shift enhancement is significantly better across configurations, EA-shift (2-8 and
higher) being able to match and surpass the performance of the best Vanilla RHEA (10-14). This is a critical
finding of this study: the simple shift buffer enhancement, which requires little extra computation time,
allows for much better performance without needing to increase core parameter values.

The best 4 algorithms carried forward to the second part of experiments are EA-shift, EA-tree-shift,
EA-tree and Vanilla.

EA-bandit

The EA-bandit algorithm is one of the worst variants tested in this study. In all configurations, it performed
worse than Vanilla and, in the smallest configuration (1-6), it was outperformed by all of the bandit hybrids
as well. However, in higher configurations it increases its average win rate significantly, from 29.65% to
38.50% and even outperforms EA-tree in the largest configuration (10-14).

In the game “Plaque Attack”, EA-bandit attains a significantly better win rate than most algorithms,
increasing from 69% (Vanilla, 1-6) to 98% (10-14). However, in the game “Intersection, EA-bandit (1-6) is
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Table 4.11: Configuration 5-10. Rankings table for part 1 algorithms across all games. In this order, the
table shows the rank of the algorithms, their name, total F1 points, average of victories and F1 points
achieved on each game.

# Algorithm Points Avg.
Wins G-0 G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 G-11 G-12 G-13 G-14 G-15 G-16 G-17 G-18 G-19

1 EA-shift 373 40.05
(2.50) 25 25 25 25 12 25 15 18 12 15 18 25 6 25 25 8 18 18 18 15

2 EA-tree-
shift 293 37.20

(2.48) 10 6 18 8 18 18 18 10 25 8 8 15 12 18 18 25 10 25 15 8

3 Vanilla 290 38.75
(2.53) 18 18 12 18 4 12 8 15 18 10 25 18 10 15 12 18 12 12 10 25

4 EA-tree 243 35.25
(2.36) 15 15 15 15 15 10 12 4 6 12 4 12 18 6 15 15 8 15 25 6

5
EA-

bandit-
shift

219 32.00
(2.28) 4 8 8 6 8 4 25 25 15 25 10 6 8 4 10 6 25 8 4 10

6 EA-
bandit 206 36.35

(2.52) 12 12 10 10 6 15 6 12 10 4 12 10 25 8 8 12 4 10 8 12

7
EA-

bandit-
tree

174 34.65
(2.44) 8 10 6 12 25 6 4 6 8 18 6 4 4 12 6 10 15 4 6 4

8
EA-

bandit-
tree-shift

162 33.40
(2.17) 6 4 4 4 10 8 10 8 4 6 15 8 15 10 4 4 6 6 12 18

one of the only algorithms achieving a win rate under 100% (only 89%, the others being Vanilla, 91% and
EA-bandit-shift, 99%).

The worst bandit hybrid is EA-bandit-shift, achieving only 32.05% win rate in even the best configura-
tion tested. Bandit mutation is generally most beneficial in larger configurations.

EA-tree

Across all games, EA-tree is better than Vanilla in the lower half of the configurations tested. In an overall
view of all algorithms and configurations, the tree hybrids rank mid-table, outperforming EA-bandit, but
not EA-shift.

There are several games in which EA-tree is significantly better than Vanilla in either wins or score,
although this effect is mostly observed in low configurations, in games such as “Crossfire” and “Butter-
flies”. However, in “Escape”, EA-tree is significantly worse than all other algorithms in win rate, across all
configurations.

The worst tree hybrids are EA-bandit-tree and EA-bandit-tree-shift, both being very close in perfor-
mance on configuration 10-14, while EA-tree ranks second. The statistical tree appears to be most beneficial
in low configurations.

EA-shift

The shift buffer is the best enhancement analysed. It outperforms Vanilla in all configurations, ranking
first in all but 1-6, where tree hybrids are better. Overall, the shift buffer hybrids are good at achieving
significantly higher scores than all others. As many games rely on this aspect, the win rates also increase,
although not as dramatically.

For example, in “Dig Dug”, EA-shift (10-14) is significantly better in score than all other algorithms in
all configurations. In “Infection”, even though it is again significantly better than all others in scores (10-
14), its win rate is significantly worse than most others. Nevertheless, in the games “Wait for Breakfast”
(10-14) and “Aliens” (1-6), EA-shift and its hybrids see a significant increase in both win rates and scores
(from 86% to 100% win rate in “Aliens”, p� 0.001).

The worst shift buffer hybrids are EA-bandit-shift and EA-bandit-tree-shift, which achieve a much lower
win rate. This leads to the conclusion that combining bandit mutation with a shift buffer (possibly due to
the old information stored by the bandits) is not favourable in this setting.

EA-roll and its hybrids

The overall results of the second part of experiments suggest that the shift buffer enhancement is even better
when combined with rollouts, EA-shift-roll being the dominating algorithm, while Vanilla and EA-roll rank
the lowest in most settings. It is interesting to observe the gradual increase in performance of EA-shift in
all R values, being last out of the shift hybrids in 1-6, but moving up in the rankings with the increase in
core parameters. Rollouts seem most advantageous in low configurations, as they become too expensive to
compute in the limited budget when individual length grows.
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Figure 4.13: Win percentage for configuration 10-14. The colour bar denotes in how many unique games
row was significantly better than column. Legend: A = Vanilla, B = EA-roll, C = EA-shift, D = EA-shift-
roll, E = EA-tree, F = EA-tree-roll, G = EA-tree-shift, H = EA-tree-shift-roll, I = MCTS

Table 4.12: The best algorithms (by Formula-1 points and win rate) in all configurations and rollout repeti-
tions (R), as compared against the other variants in the same configuration and the same R value (includes
variants without rollouts).

Config. R Best By F1 Points Best By Win Rate
Algorithm Avg. Wins Algorithm Avg. Wins

1-6
1 EA-shift-roll 38.35 (2.31) EA-tree-shift-roll 38.60 (2.55)
5 EA-shift-roll 40.10 (2.51) EA-shift-roll 40.10 (2.51)

10 EA-shift-roll 39.35 (2.64) EA-shift-roll 39.35 (2.64)

2-8
1 EA-shift-roll 40.35 (2.63) EA-shift-roll 40.35 (2.63)
5 EA-shift-roll 40.75 (2.46) EA-shift-roll 40.75 (2.46)

10 EA-shift-roll 40.20 (2.30) EA-shift-roll 40.20 (2.30)

5-10
1 EA-shift-roll 43.20 (2.43) EA-shift-roll 43.20 (2.43)
5 EA-shift 40.05 (2.50) EA-shift-roll 41.85 (2.42)

10 EA-shift 40.05 (2.50) EA-shift 40.05 (2.50)

10-14
1 EA-shift 39.75 (2.54) EA-shift-roll 42.80 (2.44)
5 EA-shift-roll 42.05 (2.48) EA-tree-shift-roll 42.70 (2.41)

10 EA-shift-roll 42.35 (2.53) EA-shift-roll 42.35 (2.53)

EA-tree-roll performs the worst out of the tree hybrids in all configurations andR values, indicating that
the deeper look into the future provided by the rollouts does not have a positive impact on the tree statistics.
The best tree hybrid is EA-tree-shift-roll, surpassing the variant without rollouts.

Figure 4.13 presents the significant wins of all variants in configuration 10-14, with the different repeti-
tions R = {1, 5, 10}. MCTS is included for comparison as the last row/column. It is interesting to note that
EA-shift-roll is significantly better than most other algorithms in all R values, matching the performance of
MCTS, but the most in R = 5, then decreasing in R = 10. This suggests that the ideal value peaks in the
vicinity of 5. EA-tree and EA-tree-roll also stand out as the worst algorithms in all R variations tested.

The good performance of EA-shift-roll is also highlighted in Table 4.12, which summarises the best
algorithm in each configuration and R value by both F1 points and win rate. The specific amount of points
are not presented due to their high dependence on the other algorithms in the rankings and point distribution,
therefore not being comparable independently. EA-shift-roll stands out as dominating most settings by both
F1 points and win rate, with few exceptions.

One of the interesting games to look at in more detail is “Bait”, which has a generally low win rate.
However, both EA-shift-roll and EA-tree-shift-roll achieve win rates of 19-20% in all R values for con-
figuration 10-14 and 12-14% for 1-6, significantly higher compared to 1-3% of Vanilla and EA-roll. In
“Chopper”, EA-shift-roll is significantly better in both win rate and scores than most other algorithms in all
configurations andR values, the highest win rate being 54% in 1-6, R = 5, compared to 35% maximum for
EA-roll (10-14, R = 10). The high improvement in low configurations is of specific interest, as it allows
more thinking time in other parts of the evolutionary process for more complex computations.

Comparison with MCTS

Finally, we carried out a comparison with MCTS, the dominant technique in GVGAI. Overall, only few of
the RHEA variants succeed in significantly outperforming MCTS. However, Table 4.13 shows the direct
contrast between the best RHEA variant found during these experiments in terms of generality (thus highest
F1 points in individual juxtaposition against the other algorithms), EA-shift-roll (10-14, R = 5) and MCTS
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Table 4.13: Configuration 10-14, R = 5. Best algorithm found (EA-shift-roll) compared with MCTS. In
this order, the table shows the rank of the algorithms, their name, total F1 points, average of victories and
F1 points achieved on each game.

# Algorithm Points Avg.
Wins G-0 G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 G-11 G-12 G-13 G-14 G-15 G-16 G-17 G-18 G-19

1 EA-shift-
roll 430 42.05

(2.48) 25 18 18 18 18 18 25 25 25 25 25 18 25 25 25 18 18 18 18 25

2 MCTS 430 41.30
(1.76) 18 25 25 25 25 25 18 18 18 18 18 25 18 18 18 25 25 25 25 18

Table 4.14: Configuration 10-14, R = 1. Algorithm most similar to MCTS (EA-tree-roll) compared with
MCTS. In this order, the table shows the rank of the algorithms, their name, total F1 points, average of
victories and F1 points achieved on each game.

# Algorithm Points Avg.
Wins G-0 G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 G-11 G-12 G-13 G-14 G-15 G-16 G-17 G-18 G-19

1 MCTS 451 41.30
(1.76) 25 25 25 25 25 25 18 18 25 18 18 25 18 25 18 25 25 25 25 18

2 EA-tree-
roll 409 35.90

(2.27) 18 18 18 18 18 18 25 25 18 25 25 18 25 18 25 18 18 18 18 25

(with a comparable rollout length of 14). Highlighted are the games in which one algorithm is better than
the other (even if the difference is not significant).

EA-shift-roll matches the generality of MCTS, achieving the same amount of F1 points, but a higher
win rate. When looking at individual games, it becomes clear that this RHEA variant is significantly better
than MCTS in 5 games for win rate and 6 games for scores, while being significantly worse in 3 and 6
games, respectively. For example, in game 4, MCTS achieves a win rate of 6%, while EA-shift-roll obtains
19% (p = 0.003).

Table 4.14 shows the comparison between the RHEA variant considered most similar to MCTS (EA-
tree-roll with R = 1) in its best configuration, 10-14, and MCTS (with a rollout length of 14). The fact
that the tree is updated passively alongside the RHEA population and it is only used at the end of the
evolutionary process to select which action to play leads to a significantly lower performance than MCTS
in 5 games for win rate and 11 games for score.

However, there are several games where EA-tree-roll is significantly better in terms of win rate: game
36 (p = 0.012), a game in which EAs traditionally do better than tree search, and game 91 (p� 0.001).

4.4 Conclusions
This chapter presented three pieces of work testing the performance of the algorithm in a subset of 20
games of the General Video Game AI corpus, selected based on their difficulty and game features, in
order to present a reduced set of challenges as assorted as possible. Various parameters and modifications
were tested in these common environments and the same experimental settings, so as to observe baseline
performance across several games.

Population size and individual length. First, we detail an analysis of two key parameters for the vanilla
version of the Rolling Horizon Evolutionary Algorithm (RHEA): population size and individual length.
One of the main findings of this research is the fact no single configuration of RHEA is able to find better
solutions than Random Search (RS) in the settings explored, being worse than RS in many cases. However,
the different configurations exploring different parts of the level or solution spaces show different strengths
in the different games, and the best results over all configurations are better than RS in individual games.
These results do suggest that the vanilla version of the algorithm is not able to explore the search space
quickly enough given the limited budget, and it may also evolve in the wrong direction given misleading
evaluations of individuals, especially in highly stochastic games. Therefore, this finding motivates research
in RHEA, in order to find operators and techniques able to evolve sequences of actions in a more efficient
and reliable manner. The results presented with higher execution budgets are an indication that this is
possible, as well as showcasing the possibility of attacking previously unsolvable problems.

At the same time, this experiment highlighted another interesting conclusion: given the same length for
the sequence of actions and the same budget (480 calls to the forward model), RHEA is able to outperform
Open Loop Monte Carlo Tree Search (MCTS) when configured with a high population size. In particular,
MCTS is outperformed by RHEA in deterministic games, especially those with puzzle elements or requiring
precise navigation of complex environments. As most of the entries of the GVGAI competition, including
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some of the winners, use MCTS or similar tree search methods as the basis for their entries, RHEA presents
itself as a valuable alternative with a potentially promising future.

Finally, this study analyses the performance of the different versions of the algorithm in a game per game
basis, and it is clear that in some games the agent performance increases along with the increase in values for
the population size or the individual length. For instance, in most games the agent benefits from using larger
populations (although exceptions do exist). Similarly, a long sequence of actions typically helps in giving
a better indication of rewards available to the agents through more ample exploration of the level space,
but some games form the exception and RHEA performs better with shorter individual lengths, especially
if more accurate statistics are needed on which moves are best (such as in highly dynamic environments
with dense rewards). In general, however, it has been observed that an increase in the population size has
a higher impact on the performance than considering a farther lookahead (longer individuals); therefore,
exploration of the solution space is more important than exploration of the level space, possibly due to the
exponential increase in solution space size when individual lengths become larger.

Therefore, although the general finding is that bigger populations and longer individuals improve the
performance of RHEA on average, it should be possible to devise methods that could identify the type of
game being played, and employ different (or, maybe, modify dynamically) parameter settings. In a form of
a meta-heuristic, an agent could be able to select which configuration better fits the game being played at
the moment and increases the average performance in this domain.

The most straightforward line of future work, however, is the improvement of the vanilla RHEA in
this general setting. The objectives are twofold: first, seeking bigger improvements in action sequences
during the evolution phase, without the need of having too broad an exploration as in the case of RS; and
second, being able to better handle long individual lengths in order for them to not hinder the evolutionary
process; simulating the effect of actions in the games is the most expensive part of the process, therefore
approximating such results could reduce costs and allow computation time to be spent in other parts of the
algorithm. Additionally, further analysis could be conducted on stochastic games, considering the effects
of more elite members in the population or re-sampling individuals, in order to alleviate the effect of noise
in the evaluations or to correct any wrong directions taken by the evolution due to inaccuracies in forward
model simulations.

Population seeding. Next, we presented an experiment focused on observing how a better than random
population initialisation technique affects the performance of Rolling Horizon Evolutionary Algorithms
(RHEA) in General Video Game Playing. Two different seeding techniques were used for testing. First, a
One Step Look Ahead method (1SLA), which simply carries out an exhaustive search through all actions
available and chooses the one resulting in the best next state, at each game step. Second, a Monte Carlo Tree
Search (MCTS), which takes half the budget to process the game from the current state and recommend a
solution to serve as a starting point for the evolutionary process. Experiments were carried out in a balanced
set of 20 games of the General Video Game AI framework and using various configurations of basic RHEA
parameters (population size (P ) and individual length (L)).

The results suggest that both seeding variants offer a significant improvement in performance, consid-
ering both win rate and in-game score, in particular when the P and L values are small. However, as the
parameter values increase, the benefit of seeding decreases, indicating that the unique solution offered by
the initialisation methods, which the evolution searches around, loses value compared to the wider search
space at the disposal of vanilla RHEA. A conclusion drawn from this is that the seeding-directed evolution
should be combined with better exploration of the solution space in order to achieve optimal results. Nev-
ertheless, as the aim of these algorithms is to attain a high level of play on all games, a positive result on a
relatively small sample of games negates the null hypothesis and recommends deeper investigation.

An in-depth comparison between vanilla RHEA, the MCTS-seeded RHEA and Open Loop Monte Carlo
Tree Search was also performed. The findings of this study pinpoint the fact that, as the evolution parameters
increase, so does the performance of RHEA compared to the methods based on tree search, in several games
where the search space is too large for MCTS to traverse efficiently enough. Furthermore, the MCTS
seeding in RHEA does not produce worse results than simply MCTS. Therefore, this seeding technique is
shown to have great promise in this environment. The ideas explored in this study were later taken forward
in similar work by Galvan et al. (145).

The next steps could be focused on developing the algorithm’s exploration of the game space, through
further use of tree structures for hybridisation, additional rollouts and circular buffers. Moreover, a wider
range of games will be used to ascertain that the difference in performance would indeed be significant in
an even more general setting.

Enhancements. This section studied the effects of four different enhancements applied to the vanilla ver-
sion of the Rolling Horizon Evolutionary Algorithm (RHEA), aiming to provide a fair comparison between

74



the methods and identify synergies. They were analysed in four different parameter configurations, with the
same general heuristic and in the same set of 20 games of the General Video Game AI (GVGAI) corpus.

The experiments were divided into two parts due to the large scale of the analysis. First, three of
the enhancements were tested individually and in all combinations, resulting in 8 algorithms. A bandit
system was used to guide mutation (EA-bandit); a statistical tree was kept alongside evolution employed in
selecting actions at the end of the evolution (EA-tree); and a population shifting method was used to carry
forward information from one game step to the next (EA-shift). Combinations of these methods resulted in
interesting hybrids.

The results indicate that the uni-variate bandit system does not work well in this setting where individ-
uals are sequences of actions. This is thought to be due to epistasis: changing one gene in an individual
impacts all the subsequent genes as well, therefore the statistics used by the bandits are much less useful.
This leads to a line of future work in employing an N-tuple bandit mutation (31) in order to account for
the connections between genes. The bandit systems do work better in high configurations, due to fewer
evolution iterations, therefore the effect is less pronounced. EA-shift and EA-tree-shift stood out as the best
algorithms in this first part, followed shortly by EA-tree. It was observed that the stats tree was more ben-
eficial in small configurations, due to information in small individuals being more accurate than in longer
ones. Whereas the shift buffer enhancement led to a significant increase in score gain, as well as raising the
win rates in small configurations so as to be similar to those of the vanilla version with large core param-
eter values. The shift buffer worked so well because reusing information from previous game steps means
learning more about the environment in the limited budget available.

The second part of the experiments took the 4 best algorithms found, and added Monte Carlo rollouts
at the end of the individual evaluation, repeated R = {1, 5, 10} times, to create 4 new variants (named EA-
roll for the vanilla version). No significant difference was observed across the configurations, except for
EA-shift, which saw an increase in performance proportional to the individual length, surpassing its rollout
counterpart. Therefore, the longer the individual, the less beneficial the rollouts become.

EA-shift and EA-tree-shift-roll showed a promising performance, but the best algorithm emerging was
EA-shift-roll (using a shift buffer and rollouts repeated R = 5 times, configuration 10-14). This method
was compared to Monte Carlo Tree Search (MCTS) for validation and it outperformed MCTS significantly
in several games. The algorithm considered most similar to MCTS (EA-tree-roll, employing the stats tree
and rollouts repeated R = 1 times), in its best configuration (10-14), was not as good as initially estimated,
and worse than most other RHEA variants in this second part of experiments.

Another line of future work will be expanding this study to a wider range of games, as 20 remains a
relatively small sample and possibly not indicative of the true potential of these methods. Additionally,
determining the characteristics of the specific games that lead to changes in the performance of particular
methods would be an interesting study in itself, which would open the possibility of dynamically tuning
and turning these features on or off in order to gain the maximum benefit from each one, depending on the
problem at hand.

Next chapter. In the next chapter, we develop several ideas described here to strengthen and deepen the
analysis process applied. This aims to better study the strengths and weaknesses of the algorithm in the
variety of environments proposed and give better insights into its inner-workings in order for the algorithm
to be more accessible and more understandable to the wider community, and to encourage novel applications
of RHEA.
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Chapter 5

RHEA Analysis

This chapter presents work carried into analysis of RHEA’s (and other AI players) decision-making process,
looking to answer the question of why it does the things it does, and trying to deepen the understanding of
the inner-workings of this algorithm. This chapter includes work into the visual analysis of the algorithm
(Section 5.1), analysis of behaviour in sparse reward environments (Section 5.2) and analysis of agent
features leading to prediction of overall performance (Section 5.3). All works included here use the same
set of features extracted from the agent’s decision-making process to show different applications of the
analysis: a visual analysis tool (displaying the features extracted directly, in a more user-friendly manner),
online adaptation of the agent to improve the decision-making process depending on the state of the features
extracted, and predicting the agent’s winning chances depending on the state of the features extracted,
respectively.

5.1 Visual Analysis
The work in this section was published at AIIDE 2018:

——, “VERTIGO: Visualisation of Rolling Horizon Evolutionary Algorithms in GVGAI,” in The 14th
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 2018, pp. 265–267.

The first type of analysis discussed in this section is visual. Experiment results are often reported
in numerical form, allowing for quick comparison between multiple algorithms or running these values
through more advanced processing software. Additionally, they may also be accompanied by a visual
representation of the same numbers: readers understand information in different ways, and often it is much
easier to see bars that are higher or lower than others to understand which algorithm is better, rather than
scanning numbers in a multitude of tables to gather the same information.

However, an important part of analysis is looking deeper into an algorithm’s inner-workings, to under-
stand the reasons for its decision-making, identify weak or strong points and adapt it accordingly to obtain
the desired behaviour for the given problem. This means storing event logs during the games and con-
densing this information into a useful and easy to read summary. There have been various algorithms that
use this sort of information directly in their decision-making: Perez et al. use domain knowledge gathered
during the game to guide their agent (49), or Bravi et al. use statistics on agent agreement (146) and events
triggered in the game (147) to gain a clearer image and wider range of agent behaviours. More details on
related work can be found in Section 2.4.

Rolling Horizon Evolutionary Algorithms are newer methods that do not benefit from the ample research
behind others such as Monte Carlo Tree Search. In particular, we identify a gap in understanding this
algorithm’s thinking process and how its differences lead to large dissimilarities in behaviour to MCTS.
New and less understood algorithms are less likely to be rapidly adopted by the wider community, thus
shining some light into the unique aspects of this method, as well as similarities and dissimilarities in its
thinking process to others, could help it in being more widely adopted. As a result, to address this gap,
we present a tool that allows running the algorithm in an easy-to-use application with several features of
interest.

VERTIGØ is an open-source software publicly available on Github1 (18). It consists of in-depth anal-
ysis and visualisation systems developed independently of the GVGAI framework as stand-alone appli-
cations. A Java application allows for integration within GVGAI, as well as easy-to-use interaction with
the system while running AI agents on the multitude of games in GVGAI. We highlight several exciting
features of the latest version published at the time of writing this thesis (v1.2):

1https://github.com/rdgain/VERTIGO
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(a) Main panel.

(b) Parameter choice panel.

(c) Instructions panel.

Figure 5.1: VERTIGØ graphical user interface.
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1. All-Java application: watch the agent play any of the GVGAI games, while observing the various
plots and analysis available updated live during the game.

2. Pause the games to analyse moments of interest more in-depth.

3. Change game-playing agents and agent parameters in the GUI (note: currently only the RHEA agent
is properly supported; however, the program was rewritten to easily support plugging in other agents,
as long as they implement the required interfaces).

4. Keep track of history of game results.

5. All information and player logs saved into files, so they can be exported and further processed after
the games.

6. Several analysis options:

• Heatmap of all positions travelled during the game (with colour adjustment option to fit all
games visuals).

• Simulation visualisation, showing positions visited during the agent’s internal simulations for
the game tick, with sizes and colours adjusted so as to indicate the value of the game state as
well (with larger/greener circles indicating better states, and smaller/redder circles indicating
less good states). Colour adjustment options are available to fit all games visuals.

• Convergence line plot: showing at every game tick the iteration number where the agent de-
cided the final action recommended and did not change again for the remainder of its thinking
time.

• In-game score progression line plot: showing at every game tick the agent’s in-game score.

• Score gain/loss events: highlighting the game ticks where the agent gained or lost points.

• Win/Loss events: highlighting the game ticks where the agent saw winning or losing game
states during its internal simulations.

While the agent plays a game, features describing its experience are recorded in files and then analysed
by a custom Java plotting class (making use of the xchart Java library2. This class presents the information
in visual form through a collection of graphs as described above. Figures 5.1 show the basic interface for
the application, while Figures 5.2 show example analysis plots for 2 different games: score progression in
“Butterflies” (top) and convergence with scoring events in “Chopper” (bottom).

The version of RHEA included in the system is similar to that used in the rest of the experiments
in this thesis, combining features previously discussed in various publications (15; 16; 17) and keeping
toggles, categorical and numerical hyper-parameters to control the usage of these modifications. These
include population size, individual length, budget allocated (in forward model calls), heuristic used etc.
There are 29 total parameters, with a search space size of 13.8 × 1012. All parameters can be found
in class VERTIGO.players.RHv2.utils.RHEAParams.java and VERTIGØ can be run through
class VERTIGO.VERTIGO.java.

The system was constantly evaluated and tested during development, as well as exposed to human testers
at the end of the development process. The feedback received after this trial, largely related to accessibility
for users not very familiar with all of the algorithm features, were incorporated in the updated 1.2 version
described in this chapter.

5.2 Sparse Reward Landscapes
The work in this section was published at AAAI 2019:

——, “Tackling Sparse Rewards in Real-Time Games with Statistical Forward Planning Methods,” in
AAAI Conference on Artificial Intelligence (AAAI-19), vol. 33, 2019, pp. 1691–1698.

Next, we look at observations derived from the visual analysis and resulting follow-up research. In
particular, we can often observe on graphs combining convergence and game score events (e.g. Figure 5.2
bottom) that the algorithm converges very quickly in the parts of the environments where the rewards are
sparse, due to not being able to find any reward signals and therefore unable to improve on its initially gener-
ated solution in the flat reward landscape. However, this is different in the parts where many scoring events
occur, where the number of generations before convergence is reached is much higher, as the algorithm

2https://knowm.org/open-source/xchart/
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(a) Score plot in the game “Butterflies”.

(b) Convergence and score events plot in the game “Chopper”.

Figure 5.2: VERTIGØ example plots, including positional heatmap (squares with reduced opacity) and
simulations (circles of different sizes and colours).

requires more iterations and more statistics gathered in order to make the best decisions in environments
with dense rewards.

As a result, we propose a method to automatically adjust the rollout length of the algorithm based on
the flatness of the reward landscape, so as to encourage longer rollouts in situations with sparse or equal
rewards (in order to potentially reach game states further into the future which can be better distinguished),
and shorter rollouts otherwise (in order to allow for more generations to be iterated through leading to better
statistics gathered and more accurate decisions taken).

The problem of dealing with different reward systems is one of the challenges in the domain of general
video game playing, as all games are diverse - while some may present often opportunities for a player to
gather points (dense rewards, e.g. “Aliens” in GVGAI), others might not offer any rewards at all and only
give positive signals on completion of the level (sparse rewards, often, puzzle games). Table 2.1 shows the
variety of reward systems encountered in the games studied in this thesis and their variety. As such, we
expect that an algorithm able to cope with rewards varying not only between games, but between different
points in time in the same game as well, would be a step towards more adaptive general AI.

To clarify the specific types of games used in this study, we can differentiate the reward systems used in
the 20 games as follows:

1. Sparse rewards: Crossfire, Camel Race, Escape, Hungry Birds, Wait for Breakfast, Modality

2. Dense rewards: Dig Dug, Lemmings, Roguelike, Chopper, Chase, Bait, Survive Zombies, Missile
Command, Plaque Attack, Infection, Aliens, Butterflies, Intersection, Seaquest

For example, the game “Camel Race” shows the agent racing against other characters (camels, in this
case), controlled by simple behaviours (e.g. random, consistent movement towards the goal at different
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Table 5.1: Deceptive game set including feature analysis.

Idx Game Stoch. Rewards Win Lose Levels NPCs Res. Actions
0 Decepti Coins D Exit Death M/Dense E Move
1 Decepti Zelda x Disq Exit Death M/Sparse E Move+Shoot
2 Sister Saviour Disq Kill Death S/Sparse E Move+Shoot
3 Invest x Disq Timeout Score S/Dense N Move
4 Flower D Timeout - S/Sparse Move
5 Wafer Thin Mints Exit D Timeout/Exit Score M/Dense Move

speeds etc.), and attempting to traverse the level from one end to the other the fastest, while avoiding
obstacles on the way. In this game, the agent receives no rewards unless it completes the level successfully,
which earns it 1 point.

Differently, the agent plays a fairy trying to collect all the butterflies in the game “Butterflies”, receiving
2 points per butterfly collected; this game is played in an open meadow, with many randomly moving
butterflies flying around the agent and possibly spawning even more if they touch the cocoons placed around
the level. The cocoon mechanic can further better reward a player that delays their win in order to allow
more butterflies (and therefore more sources for points) to spawn.

It is further interesting to note that some games feature non-linear reward systems, such as “Lemmings”
or “Plaque Attack” - here, the player can lose points depending on its interactions with the environment, as
the games include enemy non-player characters that attempt to hurt the player’s score. Therefore the player
could try to prevent these negative interactions, although some may actually be required in order for the
player to win.

In addition to the usual set of 20 GVGAI games, we use a further 6 games with reward structures and
level layouts designed to specifically deceive regular AI assumptions (e.g. the more points the agent obtains,
the better) as well as take advantage of their limitations (e.g. simple generic heuristics, limited thinking time
/ lookahead lengths) (52). A full description of the games can be seen in (52) and Appendix B, and feature
analysis for this game set is presented in Table 5.1. Due to the longer or adaptive rollouts resulting from
this work, we hypothesise that our proposed methods will improve performance in these types of games as
well.

5.2.1 Baseline Methods

We tested the performance of two different algorithms and two variations of each, adding the dynamic
rollout length enhancement on top. We use both Monte Carlo Tree Search 2.2 and Rolling Horizon Evolu-
tionary Algorithms 3.1 to show that this is a flexible enhancement that can work with any algorithm using
variable length lookaheads for decision-making purposes. In the case of RHEA, we first chose to use the
best variant described in literature up to date, which uses a shift buffer and Monte Carlo rollouts at the
end of the individual evaluation (17).The MCTS agent implemented in the GVGAI framework already uses
Monte Carlo rollouts; however, a similar method to the shift buffer for keeping the statistical tree between
game ticks instead of starting from scratch heavily impacted the base algorithm’s performance, and thus we
further test a variant of RHEA without the shift buffer, for fairness of evaluation.

All algorithms tested employ the same parameter configuration: a starting rollout length L of 14 actions
(and L/2 = 7 actions for Monte Carlo evaluations added in RHEA), a budget of 1000 forward model calls
and a population size P of 10 individuals for RHEA variants.

f = score +

{
H+, if win

H−, if loss
(5.1)

Further, all use the same heuristic function to evaluate the final state reached after performing their
rollouts, shown in Equation 15.2.1. Here, H+ represents a very large positive integer, and H− represents a
very large negative integer; these are set to very large values in order to encompass all possible rewards the
agent might receive from a game (specifically to account for discontinuous and large increments in rewards
observed in the game “Seaquest”). In order to keep the UCB constantC =

√
2 relevant in MCTS and due to

the generally unknown minimum and maximum rewards per game, MCTS keeps track of reward boundaries
dynamically and normalises all rewards observed according to the previously observed boundaries. This
heuristic function aims to encourage winning states and penalise losing states, while using the game score
as a guiding feature through the rest of the states. However, it is worth noting that this function often returns
values of 0 in games with sparse rewards, which can reduce the agent’s behaviour to random. More complex
functions could be used to give more information to the agent and better guidance in its search, but the focus
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Table 5.2: Extreme length rollout budget allocation. Default configuration in bold.

Idx Length Budget (FM Calls)
1 14 1000
2 50 3000
3 100 6000
4 150 9000
5 200 12000

of this work is to study performance differences in our proposed variants, especially in these very difficult
situations.

Lastly, we note an interesting difference in the exploration of the search space by MCTS and RHEA,
particularly relevant in this study. MCTS builds its tree incrementally, focusing on nodes closer to the root
and slowly expanding outwards in order to build most accurate statistics on which action to take next. In
sparse reward games, this algorithm is very likely to evenly expand its tree, not being able to exploit the
more promising branches (as they all would look the same in the lack of rewards) and therefore losing its
great advantage that sets it apart from other techniques in many other games. However, RHEA spreads its
computation efforts evenly across the entire search space, as it samples complete sequences of actions at a
time. In the cases where rewards to exist and may be further away on a specific path, or in puzzle games
where a precise sequence of action is required to solve the problem, RHEA is much more likely to sample
an overall better solution than MCTS; this generally gives RHEA the upper hand in sparse reward games,
while MCTS generally excels in environments with dense rewards.

5.2.2 Experiments

We carried out two sets of experiments with these methods. First, we studied the difference in performance
when strictly increasing a method’s lookahead, with a directly proportional increase in budget available,
so that 40 individuals are evaluated in RHEA and 40 iterations are performed by MCTS, as is the case
in the default settings described above. And second, we applied the dynamic rollout length adjustments,
constrained within the fixed budget of 1000 FM calls.

Extreme Length Rollouts

For this first experiment, we consider research which uses much longer lookaheads for the algorithms
with great success (148). This is often not feasible in real-time with current computation power when
running most of the GVGAI games, let alone complex modern video games where simulations of game
states would be much slower to run. However, technology advances suggest that it might be possible to
run such simulations in the future and it is worth investigating whether simply increasing the rollout length
is beneficial for these algorithms, so as not to use up other resources for additional dynamic adjustments
calculations.

The longest lookahead previously explored in GVGAI research was 24 in (15). Here, we test up to 4
times this length. See Table 5.2 for details on lengths tested and associated budgets.

We hypothesise that very long rollouts allows the agent to sample action sequences which lead to further
away rewards, and also create better plans to reach the rewards, as they do not face the regular trade-off
between lookahead length and accuracy of statistics. Therefore performance in sparse reward games should
be increased. However, these longer lookaheads might also cause the agents to ignore more immediate
threats, as they would tend to focus on longer term goals instead.

Dynamic Length Rollouts

The second set of experiments investigates instead the effects of dynamically modifying the rollout lengths
within the fixed 1000 FM calls budgets, which is in line with real-time specifications with regards to GVGAI
games. The aim of this enhancement is to promote accurate decision-making in dense reward situations and
quick reactions to the unexpected, while a more exploratory approach can be successfully applied so as
to identify further away rewards when these are sparse. The details of the inner-workings of the dynamic
adjustment of action plans is detailed in Section 3.2.6.

We hypothesise that dynamic rollouts will improve performance in sparse reward games, while not
hurting win rates in dense reward environments. Agents should be able to better adapt and cope with a
variety of different situations and find successful approaches to solve even more difficult problems.
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Table 5.3: Average win rate for long rollouts variations. Distinction is made between sparse and dense
rewards games, with the final column averaging over all games. Budget for each algorithm is L × 60.
RHEA obtains significantly better results than MCTS in all but sparse reward games (L = 200).

Alg L Sparse Dense Overall

RHEA

50 29.80 (3.30) 61.33 (1.66) 51.80 (2.14)
100 36.36 (3.59) 61.04 (1.87) 53.55 (2.37)
150 36.03 (3.59) 62.63 (2.10) 54.60 (2.53)
200 37.04 (3.85) 60.89 (1.93) 53.70 (2.49)

MCTS

50 14.31 (3.29) 53.54 (2.08) 41.70 (2.42)
100 22.39 (3.79) 54.18 (1.58) 44.50 (2.23)
150 26.77 (3.94) 53.75 (1.49) 45.60 (2.21)
200 30.98 (4.14) 53.61 (1.52) 46.70 (2.29)

5.2.3 Results and Discussions

The results reported in this section mainly focus on the win rate and game scores achieved by the algorithms.
One aspect further reported is the algorithm’s sum of Formula-1 points over all games, when compared to
all other variants of the same algorithm. The points are awarded per game, based on the algorithm’s rank (by
win rate), the first ranked receiving 25 points, then 18, 15, 12, 10, 8, 6, 4, 2 and 0 for the rest, depending on
the number of methods included in the tournament. This is the typical ranking system used in the GVGAI
competition to better approximate generality across a range of games.

Extreme Length Rollouts

Overall, results suggest that the general trend is the longer the rollouts, the better. However, there is a
point where the improvement halts in RHEA (see last column in Table 5.3). For MCTS, even though win
rate increases with rollout length, the number of F1 points gathered actually decreases (from 379 points
to 338 points), suggesting that long rollouts favour some games in the detriment of others. When looking
at the different reward systems, the improvement is only noticeable in sparse reward games, whereas the
performance in dense reward games remains fairly constant; one exception is “Bait” which increases from
16.5% to 37.4% for RHEA with L = 150 (this game is a special incremental scoring system game case
featuring puzzle elements; see Section 2.1.2 for details). A similar trend is observed for MCTS: significant
improvement in win rate in sparse reward games (from 14.31% to 30.98%), while performance in dense
reward games remains constant; thus the performance gain in sparse reward games is not detrimental to
the rest of the problems. However, we do notice a striking drop in performance for MCTS in the game
“Chopper”, where the algorithm falls from 100% win rate to 4% with L = 200; the same is not observed
in RHEA, suggesting MCTS to be worse at dealing with immediate threats when considering farther ahead
rewards.

Figure 5.3 shows the win rate of both RHEA and MCTS variants with long rollouts in the sparse reward
games. It is interesting to observe that in the game “Escape” both methods increase their performance until
they peak (at L=100 for RHEA and L=150 for MCTS), following which the win rate drops again. In most
other games we see a steady increase as rollout length goes up. This could suggest that the rollout length
should not be pushed to too high values and instead more carefully considered based on the problem at
hand.

Dynamic Length Rollouts

The two algorithms tested in this study show very different reactions to dynamic variations of their rollout
length. This adjustment halves win rate in RHEA (from 48.60% to 21.05%), but it improves performance
in MCTS, from 40.40% to 44.00% overall.

The explanation for the large drop in win rate suffered by RHEA is the use of the shift buffer. In fact,
it is reasonable that altering previously evolved sequences of actions by cutting or increasing them (with
new random actions added at the end) changes the sequence (and importantly, the phenotype) too much
for the algorithm to be able to handle. This theory was tested and it showed that, by removing the shift
buffer, dynamically adjusted rollout lengths in RHEA lead to a 39.55 win rate. This is still lower than the
baseline method, but it is at the level of the default MCTS method without dynamic rollouts, suggesting that
this adjustment does have the potential of improving performance, with possibly tweaked (or dynamically
adjusted as well) parameters.
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Figure 5.3: Win rate in sparse rewards games for RHEA and MCTS with extreme length rollouts. Shadowed
areas indicate the standard error of the measure.
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Figure 5.4: Variations in dynamic rollout length (blue) and fitness landscape flatness (orange) for RHEA
agent “Butterflies”, level 0. Note that the scale for rollout length is on the secondary (right) Y axis.

Table 5.4 summarises the win rates of the two methods and their variations on the set of 20 games.
Looking more in-depth at the two types of reward systems paints an interesting picture. The performance
of RHEA remains similar in sparse reward games when dynamic rollouts are employed, whereas the no-
ticeable drop in performance comes from the side of dense reward games, notably “Chopper”, from 100%
to 56.57%, and “Intersection”, from 100% to 43.43%. This indicates dynamic rollouts to be harmful for
RHEA in environments dependent on quick reactions.

However, MCTS sees a similar story as in the case of extreme length rollouts: the performance in sparse
reward games is significantly improved (from 6.90% to 19.70%), with no detriment to the rest in the set.
Some notable examples here are “Escape”, which sees an increase in win rate from 0% to 29.29%, and
“Wait for Breakfast”, from 4% to 42.42%. This suggests dynamic rollouts to be greatly beneficial to MCTS
in sparse rewards landscapes.

Figure 5.4 shows an example of how RHEA varies its rollout length L in the game “Butterflies” and the
corresponding fitness landscape flatness fLd. The upper and lower limits (SD+ and SD−, respectively)
are the points where the algorithm is expected to adjust its rollout length depending on its assessment of the
fitness landscape. It is interesting to note that the rollout length does match the shape of the fitness landscape
flatness. The fact that the algorithm reduces its rollout length after a peak at game tick 255 suggests that
RHEA is able to successfully use the longer rollouts to adjust its search and find the more interesting parts
of the level to win the game.

Deceptive Games

The last experiment was to test these methods on the deceptive games presented by Anderson et al. (52).
It is expected that the adjusted variants would perform better than the baseline, as they are less biased and
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Table 5.4: Win rates for RHEA and MCTS, vanilla and dynamic variants (non-shift RHEA). Distinction is
made between sparse and dense reward systems, with the last column averaging win rates over all games.

Alg Sparse Dense Overall
RHEA 25.59 (2.82) 58.04 (1.73) 48.31 (2.05)

RHEA-dyn 24.41 (3.26) 46.03 (2.84) 39.55 (2.97)
MCTS 6.90 (1.79) 54.76 (1.65) 40.40 (1.69)

MCTS-dyn 19.70 (3.37) 54.47 (1.89) 44.04 (2.33)

better adapt to various situations when making decisions. The most interesting results on the 5 games tested
are as follows.

• “Decepti Coins”: RHEA-dynamic performs significantly better than all other RHEA variations, in
both win rate and score (55.56% win rate, a significant 40% improvement over baseline). All MCTS
variations achieve a 79.8% win rate, although the extreme rollout length variations complete the
games the fastest (200 ticks faster than the baseline on average).

• “Flower”: All algorithms achieve 100% win rate, but MCTS with long rollouts is overall significantly
better than the baseline in score, with over 200 points improvement for all rollout lengths. MCTS
with reward signals gains 50 points less than baseline RHEA, but still 100-300 more points than all
other RHEA variations.

• “Invest”: No algorithm manages to solve this game, but all fitness exploratory variations of the al-
gorithms are significantly better than the baseline in score (100-300 point improvement for MCTS,
10-100 points for RHEA).

• “Sister Savior”: The win rate in this game is on average very low (3.03% ± 1.08), with 4 algorithms
unable to solve it: baseline MCTS, MCTS-dynamic, RHEA-150 and RHEA-200. The highest win
rate is achieved by MCTS-100 (10.26% ± 4.86), followed closely by RHEA-50 with 7.69% ± 4.27
win rate.

• “Wafer Thin Mints Exit”: All algorithms achieve 100% win rate. RHEA-dynamic is significantly
better in score than the baseline, 2.68 (±0.36) to 1.16 (±0.11) points.

RHEA-dynamic performed much better than the baseline method in most of the deceptive games tested.
There was not much difference observed in some games in terms of win rate, all variations achieving either
100% or 0% victories, although there were overall improvements in either win rate or game score in all
cases over the baseline methods. This indicates our modified methods to be more robust to deceptive
reward systems.

5.3 General Win Prediction
The work in this section was published at IEEE CIG 2018:

——, “General Win Prediction from Agent Experience,” in Proc. of the IEEE Conference on
Computational Intelligence and Games (CIG), Aug 2018, pp. 1–8.

The question of whether the correct algorithm is used for the problem at hand usually comes at the end
of execution, when the algorithm’s ability to solve the problem (or not) can be verified and/or its behaviour
analysed, as has been done in the works presented up until now in this thesis. But what if this question
could be answered in advance, with enough notice to make changes in the approach in order for it to be
more successful? This section proposes a general agent performance prediction system, tested in real-time
within the context of the General Video Game AI framework. It is solely based on agent features extracted
from the analysis of their thinking process, therefore removing potential human bias produced by game-
based features observed in known games.

Several previous studies suggest clustering games using game features or performance of agents on
them (149; 1; 124; 150). In general, this clustering can be used to select which agent, from a collection
of different techniques, should be used to play the game at stake. This is a reasonable approach, but little
thought has been put so far into analysing if the algorithm should be changed once the game has already
started. The technique used in a particular game may need to be discarded in favour of another one, either
because the choice was wrong in the first place, or because the game conditions have changed.
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In fact, it is common for a human who is playing a game to have a certain intuition about how well
are they doing mid-way through it. A player in Space Invaders can see, before losing the game, that the
presence of too many aliens close to the ground is a bad sign. Having most pellets still to be eaten in Pac-
Man with no power pills left in the level can also be an indication of the likely (negative) outcome of the
game. Our interest is to see if it is possible to give this ability to a general agent, allowing the possibility of
changing technique before it is too late in the game.

The use of game features, however, poses an additional problem: including the number of pills or aliens
as features is a very specific approach. In fact, even considering GVGAI terms (as presence of Non-Player
Characters, portals, resources, etc.) is not general enough. This does not only tailor the methods to GVGAI
(which may be hard to avoid when working with a specific framework), but also to the games the algorithm
designer has seen in the past. Other features, however, can be more resilient to this bias, such as agent-based
features (114): decisiveness of action selection, speed of convergence to a recommendation or analysis of
the fitness landscape.

The work presented in this section explores the idea of designing a game outcome predictor. In par-
ticular, we propose building predictors that only focus on agent-based features, in order not to bias the
prediction towards already seen games. The question this section tries to answer is if it is possible to train a
model solely on agent experiences, so it is able to estimate the probability of victory at the current state for
any game within the GVGAI framework.

As game situations and agent behaviour can be very different in various parts of the game, we differ-
entiate three different models that can be queried while playing the game to determine whether the agent
will win or lose, based on the current game phase: early, mid and late game feature models. The models
are trained on 80 games in the framework and tested on 20 new games, for 14 variations of 3 different
methods: RHEA, MCTS and Random Search (RS). In this context, RS samples uniformly at random action
sequences of length L within the allocated budget and chooses for play the first action in the best solution
found. The same RHEA individual evaluation method is applied to evaluate RS sequences of actions, and
the algorithm chooses the first action of the best sequence sampled to play in the game. All agents use the
same heuristic function (see Equation 5.2.1).

Additionally, we introduce the term analysis windowW for MCTS, which is represented by the number
of iterations included in the analysis - thus grouping the iterations in sets, similar to the concept of popula-
tion used in RHEA. In RS, this same number is used to determine the number of sequences sampled in a
game tick (no evolution occurring afterwards).

5.3.1 Classification
Due to the high variety of the games in the GVGAI framework and the low overall performance of the
general agents (most games remain too difficult to be solved), as highlighted in the literature review, the
F1-Score (see Equation 5.4) will be reported as to the quality of the classifiers employed in this study. It
represents the harmonic average between precision and recall, 1 signifying the best value and 0 the worst.

precision =
TP

TP + FP
(5.2)

recall =
TP

TP + FN
(5.3)

F1 = 2 · precision · recall
precision+ recall

(5.4)

In Equations 5.2 and 5.3, TP stands for true positives (correctly predicted a win), FP stands for false
positives (incorrectly predicted a win) and FN stands for false negatives (incorrectly predicted a loss). This
is meant to be a better measure of classifier quality than accuracy when there is an imbalance in data (in
this case, a majority of games, approximately 77%, resulting in a loss, see Table 5.5) (151).

5.3.2 Data set
To obtain the set of agents used to generate the data set, 3 rollout values L were tested for RS (10, 30, 90);
2 parameter sets were tested for all 4 RHEA variations (P=2,L=8 and P=10,L=14); 3 parameter sets were
tested for MCTS (W=2,L=8; W=10,L=10 and W=10,L=14). Every experimental setup makes use of the
same number of FM calls.

All 14 algorithm variations described previously were run on all 100 games publicly available in the
GVGAI Framework, 20 times on each of the 5 levels, being given a budget of 900 FM calls. Each run
produced 2 log files, recording information about the agent inner processing, as well as its actions played
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Table 5.5: GVGAI-style Formula-1 point ranking of all methods. Type and configuration (rollout length
L if one value, population size P and rollout length L if two values) are reported, followed by the sum of
Formula-1 points across 20 games and the average win rate.

# Algorithm Points Avg. Wins
1 10-14-EA-Shift 1225 26.02 (2.11)
2 10-RS 898 24.33 (2.13)
3 2-8-EA-All 888 23.95 (1.98)
4 30-RS 885 22.49 (2.02)
5 2-8-EA-Shift 866 24.54 (2.00)
6 14-MCTS 780 24.29 (1.74)
7 10-14-EA-All 695 22.66 (2.02)
8 10-14-RHEA 664 23.23 (2.08)
9 10-MCTS 652 24.01 (1.65)
10 2-8-EA-MCTS 621 23.98 (1.73)
11 10-14-EA-MCTS 618 23.99 (1.80)
12 8-MCTS 594 23.42 (1.61)
13 90-RS 457 16.31 (1.67)
14 2-8-RHEA 257 18.33 (1.77)

and game scores, at every game step, in addition to the final game results (win/loss, final score and number
of game ticks).

Data set and processing scripts are publicly available3. On each game, Formula-14 points are awarded
attending to a ranking determined by win rate. The first 10 ranked entries receive 25 points, second 18, then
15, 12, 10, 8, 6, 4, 2, 1 and 0 for the 11th and below positions. Points across games are summed up for an
overall ranking, shown in Table 5.5.

The rest of this section presents the metrics recorded for each agent, as well as the features extracted
from the logged data and any pre-processing steps taken.

A list of the 12 features extracted for each (game, player, level, repetition) tuple can be found below.
Features φ2, φ8, φ9, φ10, φ11 and φ12 compute averages from the beginning of the game up until the current
tick t. Features φ5, φ6, φ11 and φ12 rely on the FM. Only agent features were used in this study, with the
exception of the game score:

• φ1 Current game score

• φ2 Convergence: Iteration number when the algorithm found the final solution recommended during
one tick. A low value indicates quick and almost random decisions.

• φ3 Positive rewards: Count of positive scoring events.

• φ4 Negative rewards: Count of negative scoring events.

• φ5 Success: The slope of a line over all the win counts. Win count increases when any solution sees
the end of the game with a win, at any point during search. A high value indicates the increase in
discovery of winning states.

• φ6 Danger: The slope of a line over all the loss counts. Loss count increases when any solution sees
the end of the game with a loss, at any point during search. A high value indicates the increase in
discovery of losing states.

• φ7 Improvement: The slope of a line resultant from all best fitness values plotted over game tick. A
high value indicates good fitness improvement.

• φ8 Decisiveness: Shannon entropy (SE) (see Equation 5.5) over the percentage of times pi each of
the possible actions i was recommended (it was the first action of a solution in the final population or
analysis window). In all cases of distribution-based features, a high value suggests actions of similar
value; the opposite shows some to be dominating.

H(X) = −
N−1∑
i=0

pilog2pi (5.5)

3https://github.com/rdgain/ExperimentData/tree/GeneralWinPred-CIG-18
4Not to be mistaken with F1 accuracy measure for classifiers.
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(a) Early game (0-30% of game time). (b) Late game (70-100% of game time).

Figure 5.5: Feature correlation.

• φ9 Options exploration: SE over the percentage of times pi each of the possible actions i was
explored (it was the first action of a solution at any time during search). A low value shows an
imbalance in actions explored.

• φ10 Fitness distribution: SE over fitness per action.

• φ11 Success distribution: SE over win count per action.

• φ12 Danger distribution: SE over loss count per action.

The full feature file (processing all games and algorithms for global classifiers) took approximately 2.5
hours to generate, from 26GB of raw metrics data split over 281.4k files (Dell Windows 10 PC, 3.4 GHz,
Intel Core i7, 16GB RAM, 4 cores).

Figure 5.5 shows the pair-wise correlation between the features extracted (using the Pearson correlation
coefficient), in a comparison between the early (first 30% of game ticks) and late (last 30% of game ticks)
phases of the games. Differences are small, but they do exist. An aspect worth highlighting is the higher
correlations in the bottom right corner in the late-game phase versus the early-game phase (i.e. the success
distribution appears to increase correlation with all other features).

Another interesting positive correlation that only appears in the late-game phase is that between the
sense of danger and the convergence, suggesting agents take longer to settle on their final decision when
surrounded by possible losses. A positive correlation that is less strong in the late-game is that between
fitness improvement and fitness distribution over the actions, implying that when one action is deemed
significantly better than the rest, it is unlikely for the fitness to improve further, possibly due to the other
actions not being explored enough. The case of one action appearing to be dominating leads to a persistent
negative correlation between convergence and fitness distribution. This suggests that agents are unlikely
to change their decision if one action is deemed significantly better than the rest and try a less promising
move.

5.3.3 Predictive models

For the purpose of these experiments, we split the games (and all data corresponding to each game) 80/20
for training/test data (thus testing occurs on data points in completely new games). This study aims to build
several classifier models from agent features extracted, which would predict a win or a loss during play of a
new game. We also show that the system is robust enough to handle new agents with significantly different
play styles as well.

It takes approximately 10 seconds to process a full feature file and split the data into train and test,
another 10 seconds to train a global model on a full feature file (or 1 minute if cross-validation is used).
Predicting the outcome of 28000 instances takes approximately 1 minute, the equivalent of 2.26ms per
instance. As the data used in this study is publicly available, adapting the methods to different problems or
agents would only involve extracting the relevant features from the newly introduced agents or problems.
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Table 5.6: Global rule-based classifier report. Global model tested on all game ticks of all instances in the
test set.

Precision Recall F1-Score Support
Loss 0.83 0.52 0.64 20500
Win 0.35 0.70 0.46 7500
Avg / Total 0.70 0.57 0.59 28000

Table 5.7: Global AdaBoost classifier report. Global model tested on all game ticks of all instances in the
test set.

Precision Recall F1-Score Support
Loss 1.00 0.99 0.99 20500
Win 0.97 0.99 0.98 7500
Avg / Total 0.99 0.99 0.99 28000

Table 5.8: Feature importances extracted from global model. φx represents a feature and its associated
importance.

φ1 0.24 φ2 0.04 φ3 0.08 φ4 0.06
φ5 0.2 φ6 0.1 φ7 0.12 φ8 0
φ9 0.06 φ10 0.02 φ11 0.02 φ12 0.06

Baseline

The baseline model all our classifiers are compared against is a simple rule-based predictor incorporating
human knowledge. In classic arcade games and most GVGAI games, gaining score is a good thing and
often means the player is on the right path to winning if they increase their score. This idea is implemented
as described in Equation 5.6, which compares the count of positive scoring events recorded to the count of
negative events. This classifier’s performance on the test set is shown in Table 5.6, where it can be observed
that it reaches an F1-Score of only 0.59 despite a high precision (0.70). This model will be referred to as
Rg in the rest of this paper.

ŷ =

{
win if φ3 > φ4

lose otherwise
(5.6)

Classifier selection - global model

Seven classifiers (with default hyper-parameters if not specified) were trained and tested for proof of
concept and classifier analysis. These are K-Nearest Neighbours (5 neighbours), Decision Tree (5 max
depth), Random Forest (5 max depth, 10 estimators), Multi-layer perceptron (learning rate 1), AdaBoost-
SAMME (152), Naive Bayes and Dummy (simple rule decision-making, very poor general performance
to be used as another possible baseline). All classifiers use the implementation in the Scikit-Learn Python
2.7.14 library (153).

Cross-validation with 10 folds was used during training to assess performance (folds created across the
entire training dataset, spanning across games where necessary), the classifiers obtaining 0.95, 1.00, 0.98,
0.96, 1.00, 0.95 and 0.66 accuracy during validation, respectively. Both AdaBoost and the Decision Tree
classifier achieved high accuracy values during validation and test (0.99, see Table 5.7 for its performance
measures) and were deemed equal. Either could be used, but AdaBoost was selected as the main classifier
for the rest of the experiments presented.

Feature importances according to AdaBoost can be seen in Table 5.8. It appears that the game score
is most important in distinguishing wins and losses, unsurprisingly, but it is followed close behind by the
number of wins seen by the agents, the improvement in fitness and the sense of danger. The decisiveness of
the agents is considered to have no impact in deciding the outcome of a game.

Model training

All games were split into logical phases for predictions at various points in the games: early-game (0−30%),
mid-game (30−70%) and late-game (70−100%). Multiple models were then trained for each of the phases,
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Table 5.9: F1-Scores each model per game phase over all games, accuracy in brackets. Each row is a model,
each column is a game phase. Highlighted in bold is the best model on each game phase, as well as overall
best phase and model.

Early-P Mid-P Late-P Total-M
Eg 0.22 (0.72) 0.42 (0.74) 0.49 (0.76) 0.38 (0.74)
Mg 0.29 (0.72) 0.57 (0.79) 0.71 (0.83) 0.53 (0.78)
Lg 0.01 (0.73) 0.05 (0.74) 0.22 (0.76) 0.09 (0.74)
Rg 0.42 (0.67) 0.47 (0.61) 0.46 (0.58) 0.45 (0.62)

Total-P 0.24 (0.71) 0.38 (0.72) 0.47 (0.73)

using agent features based on metrics logged only in the ticks corresponding to each interval. 3 different
models resulted, referred to as Eg , Mg and Lg , respectively, in the rest of this paper.

The performance of the models was analysed by testing each on the 20 new games, on their correspond-
ing interval of game ticks. During training with 10-fold cross-validation, they achieve 0.80, 0.82 and 0.99
accuracy, respectively. During test on the new games, they report accuracies of 0.73, 0.80 and 0.99 (0.70,
0.80 and 0.99 F1-Scores), respectively. These results are satisfactory and allow for further exploration.

(a) Early game phase. (b) Mid game phase.

(c) Late game phase.

Figure 5.6: Class predictions by features for the different game phases. Red (left side) signifies the model
feature predicts a loss, green (right side) a win. The probability of a class being selected based on individual
feature recommendation is plotted on the X axis.

5.3.4 Live play results
For the experiments in this paper, we simulated live play by extracting agent features from the log files for
a range of ticks (T = {100 ·a : ∀ a ∈ [1, 20] : a ∈ N}), all from the beginning of the game until the current
tick tested t ∈ T . Gameplay from all 14 algorithms on the 20 test games (20 plays on each of the 5 levels)
was used to compute the final results. Each model was tested on each of the feature files, being asked to
predict the game outcome every 100 ticks.

Simulated live play results can be observed in Figures 5.8-5.10. The simple rule-based model achieves a
high performance in some of the games and it proves better than the trained predictive models (i.e. “Aliens”,
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Figure 5.7: Model F1-scores in the game “Ghost Buster”, trained on variations of RHEA and RS (80
training games) and tested on MCTS.

(a) Aliens (b) Boulderdash

(c) Butterflies (d) Caky Baky

Figure 5.8: Live play results (part 1), averaged over up to 1400 runs, 14 agents, 100 runs per game. Game
ticks on the X axis, maximum 2000. 3 predictor models trained on early, mid and late game data features,
as well as the baseline rule-based predictor. If F1-scores were 0 for all models, accuracy is plotted instead.
Win average reported for each game.

“Defem”, “Chopper”, “Eggomania”). As these are games with plenty of scoring events, it is unsurprising
that the simple logic of Rg works in these cases. However, there are games where the trained models
achieve much better predictions (“Ghost Buster”, “Colour Escape” or “Frogs”). The reward gain is not
linear in these games, meaning the player need not necessarily be phased by a temporary decrease in score,
or too optimistic as a result of score gains.
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(a) Chase (b) Chopper

(c) Colour Escape (d) Cops

(e) Defem (f) Deflection

(g) Dig Dug (h) Donkeykong

Figure 5.9: Live play results (part 2).
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(a) Dungeon (b) Eggomania

(c) Escape (d) Factory Manager

(e) Fireman (f) Frogs

(g) Ghost Buster (h) Hungry Birds

Figure 5.10: Live play results (part 3).
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It is interesting to observe that the trained models do not follow the expected curves (Eg being better in
the early-game phase and then decreasing, Mg showing a spike in the middle of the game and Lg offering
good predictions only towards the end of the game). Instead, the early-game model appears to have a gen-
erally low performance compared to the rest, which can be explained by the limited information available
for this particular model. The late-game model seems particularly strong in games with very low win rate
(“Fireman”, for example, in which both Eg and Mg are predicting wins, yet the overall win rate remains at
0% for this game).

It is most interesting to observe the games with close to 50% win rate, “Defem” and “Ghost Buster”.
High F1-Score values here indicate that the predictors are able to correctly judge both wins and losses
equally. And indeed, in both games, the trained models achieve F1-Scores of over 0.8 only half way
through the game. Model Mg appears to excel in these situations, meaning that it can recommend the game
outcome and possibly the better approach to be used.

It is important to highlight at this point the importance of this great result: the predictor is able to foresee
with high reliability, after only a fourth of the game has been played, if the agent is going to win or lose the
game. In this case, games that are either won or lost with the same probability as a coin flip. And these are
truly general models: trained in different games, using only agent experience features. This shows a great
scope for the system’s use within hyper-heuristic methods, as some of the algorithms tested in this study do
win at “Defem” and “Ghost Buster”. Devising a procedure that determines which is that better method and
switches to it when the prediction is a loss is scope for future work, but having a system that indicates if a
change should be made is the first step in that direction.

All predictive models were further analysed as to their average quality considering all games. To this
extent, table 5.9 summarises F1-scores for all models on the different game phases identified. The models
are the same as discussed in Section 5.3.3, and they are tested in the same previous test setting, with features
extracted from the beginning of the game until the current tick which falls at the half point in each game
phase (15%, 50% or 85% of the game ticks).

The results indicate the rule-based model to be giving consistent average performance throughout the
game phases, being the best in the early phase with an F1-score of 0.42. In the mid and late game phases,
model Mg is the best, achieving a 0.57 and 0.71 F1-score, respectively. Overall, the best model is Mg with
an F1-score average of 0.53.

It is not surprising that the Mg model is the best in its respective game phase, and it is expected that the
prediction quality is generally lower in the early-game phase, when there is less information available and
it is harder to judge if the agent’s performance is good enough or not. A significant result extracted from
the summarised data is that model Mg achieves high (if not the best) F1-scores across all game phases,
indicating that the system can identify with high confidence whether the agent is performing well or not and
leaving open the possibility of switching approaches appropriately.

5.4 Conclusions
This chapter offers a deeper look into the types of analysis into the inner-workings of RHEA and other
statistical forward planning methods, which give a better understanding of not only the algorithm’s strength,
but its overall thinking process as well. We strongly encourage in-depth analysis as more informative for
future expansions and adaptations of the algorithms to new modifications or new environments, so as to
appropriately exploit the strengths of the algorithm and mitigate its weaknesses.

VERTIGØ. First, we described VERTIGØ, a tool which allows live analysis of an algorithm’s thinking
process and its behaviour in a game, while the algorithm is playing, through data overlaid onto the game
window, or side-by-side plotting of interesting algorithm features. The data analysis provided by VER-
TIGØ has already shown an interesting aspect: the lack of game events, otherwise a broad and abstract
concept, correlates to quick convergence, an easily measured metric. As algorithms in GVGAI struggle
in games with sparse rewards, this finding could be used to identify when exactly the algorithm is not re-
ceiving enough information to make intelligent decisions and act in consequence, by actively seeking to
explore more of the game space, for example. The follow-up paper on this observation, (19) was later
published at AAAI (and detailed in Section 5.2), showing results of using such information in the agent’s
decision-making to correct its weakness for better performance.

VERTIGØ could be further expanded in multiple ways. One direction would be to include more game-
play data (for example, the long term effect of player actions on the game), and to make more direct
comparisons between seemingly correlating aspects.

The games could be analysed in more detail, irrespective of algorithm, to spot when interesting events
happen (e.g. a burst of enemies spawning), then comparing this with algorithm data to analyse the algo-
rithm’s reactions to these events and improve heuristic functions. All plots and analysis extracted can be
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used directly to not only characterise agent behaviour, but games and their different properties and levels of
challenge as well.

Additionally, more algorithms could be added to the system (Monte Carlo Tree Search, for example, by
exposing their hyper-parameters and implementing the feature analysis). This would allow users to quickly
compare between not only different settings of the same method, but different methods altogether, and
answer the question of why one is better than the other in a particular game.

Dynamic length. Next, we looked at analysing various ways to explore the fitness landscapes in 20 games
from the General Video Game AI Framework (GVGAI), for two different algorithms, Monte Carlo Tree
Search (MCTS) and Rolling Horizon Evolutionary Algorithm (RHEA). Two experiments are carried out to
this extent: increasing the rollout length (to 50, 100, 150 and 200 from the baseline 14) and dynamically
adjusting the rollout length based on the flatness of the fitness landscapes, in order to allow for quick
reactions in busy environments or more exploration in sparse rewards scenarios. All methods were also
tested on a set of human-crafted deceptive reward games to analyse whether their fitness exploration variants
lead to better results in such games.

Overall, modified methods are shown to perform better than the baseline methods in sparse reward
games, without affecting success rates in dense reward games. One exception is RHEA with dynamic
rollouts, which halves win rate from 48.60% to 21.05%. Further analysis into this aspect suggested that
this was due to the shift buffer enhancement added to the RHEA variant, which is unable to cope with the
change in phenotype between game ticks where the sequence length is varied. By removing the shift buffer,
the performance of RHEA with dynamic rollouts becomes comparable to baseline MCTS, at 39.55% win
rate.

The algorithms reacted well to the increase in rollout length, their performance increasing with the
length in sparse reward games, while performance in dense reward games was kept fairly constant; there
were two exceptions to this rule in the games “Butterflies” for both methods and “Chopper” for MCTS only,
where increased rollout length is actually detrimental. In “Chopper”, this is thought to be due to the imme-
diate rewards needed to be collected in this game which may be ignored when the rollout length becomes
too large. When the rollout length was dynamically adjusted, RHEA and MCTS reacted differently, RHEA
seeing a general decrease in performance in games based on dense reward systems, whereas MCTS saw an
increase in performance in sparse reward games. This shows that RHEA is more sensitive to games requir-
ing quick decision-making, whereas MCTS benefits from the adjustments which aid in its traditionally poor
exploration in binary-reward games.

It is worthwhile mentioning that, although these experiments employ the GVGAI framework, the ap-
plicability of the findings extend beyond these games. In particular, this work focuses on modifications
to overcome the presence of sparse rewards, an issue present not only in other games such as some in the
Atari Learning Environment (43) and more complex games, but also in other real life scenarios, such as
engineering or robotics.

Regarding future work, although this is a very interesting step towards better understanding of agent
behaviour, more analysis can be carried out for the various scenarios proposed in this study, including dif-
ferent metrics (game score, GVGAI generality score) or optimising dynamic rollout adjustment parameters.
Additionally, the reactions of the methods to macro actions in this environment and dynamic length macro
actions could be studied as well. Last but not least, more interesting problems with various features to
their fitness landscapes will be introduced to the methods in order to correctly assess exactly why some
algorithms react better to some situations than others.

Win prediction. Lastly, we presented work in extracting agent features from AI gameplay in a generic
setting, using the General Video Game AI framework (GVGAI). Game-specific features are specifically
excluded in order to avoid potential bias introduced by human knowledge of already known games. 14
total variations of Rolling Horizon Evolutionary Algorithm, Monte Carlo Tree Search and Random Search
are used to generate data on 100 games, playing 20 times each of the 5 levels. Three different models
corresponding to early, middle (mid) and late game phases are trained on 80 randomly selected games and
tested on the remaining 20 through live play simulation and repeated predictions every 100 game ticks.

The results obtained indicate that models are able to correctly predict in most cases the outcome of the
game with sufficient time before the end of the game to make appropriate changes in the method employed.
Throughout all experiments, it is apparent that some models have better predictions in specific games than
others. Additionally, the mid-game phase model proved to have the best overall performance, achieving an
F1-Score of 0.53 (0.78 accuracy) across all test games and game phases. It is also the strongest model in
the individual mid and late phases, being bested in the early-game phase only by the simple rule predictor
implemented (which incorporates the human knowledge that gaining score leads to a win).
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Regarding next steps, a hyper-heuristic agent will be built, able to switch between algorithms appro-
priately while playing the game, based on the predictions given by our system. The task can be split into
two: identifying which features need improvement and which method leads to the desired behaviour. A
prediction explanatory system could be responsible for the first part of this task and first steps towards this
system are presented in Figure 5.6, which uses the LIME system5. The example provided is an explanation
of the prediction of each model at game tick 300 in “Frogs” level 0, when played by 2-8-RHEA. Although
the probabilities given by each of the features are small, which can be explained by the difficulty in pre-
dicting game outcome based on a single feature, there is an obvious difference between features and a clear
signalling of which features currently indicate a loss. Therefore, a hyper-heuristic method could make use
of this analysis to correct the loss indications.

Additionally, new methods could be introduced to the system in order to create stronger models, able
to adapt to any style of play. The current system is robust enough to handle testing on new algorithms:
Figure 5.7 shows predictions trained with data generated only by RHEA and RS variants, but tested live
with an MCTS controller playing the game. If this is compared to Figure 5.10g, it can be seen that all
models are able to maintain a similar shape and still accurately predict the outcome half way through the
game.

Lastly, more features could be integrated to better describe player experience, such as empowerment (154),
spatial entropy or characterisation of agent surroundings (114).

Next chapter. The next chapter brings together the previous manual comparison of different algorithm
parameter settings, as well as in-depth analysis as described here, to automatically adjust RHEA for high
performance on a variety of environments, both offline to give it more time to find good configurations for
a game, and online, to assess its power of adaptability in real-time. Interesting insights into the algorithm’s
parameter space are extracted, to inform further developments and future specific applications for RHEA.

5https://github.com/marcotcr/lime
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Chapter 6

Automatic Parameter Optimisation

In this chapter we revisit the application of game-playing Evolutionary Algorithms with a deeper analysis
of algorithm modifications, first offline in Section 6.1, then online in Section 6.2. We argue that automatic
exploration (or algorithmic optimisation) of algorithm variations is essential for problems with large search
spaces, although not exhaustive due to computation speed limitations. This optimisation process can further
lead to insights into algorithms, and as such we additionally conduct an in-depth analysis of the parameter
space, while highlighting performance gain in various games. There have been several recent advances
in game-playing Evolutionary Algorithms (81; 155) and a multitude of modifications proposed to improve
performance across a large number of games. The result is that the possibility space for algorithm config-
urations has grown beyond efficient manual optimisation. Although preforming grid-search is sometimes
possible for finding good values for some parameters (15), more recent works find the need to reduce more
and more the number of parameter combinations chosen for analysis (19). Therefore, the interesting in-
sights into which variation of the algorithm is actually best are limited to human exploration of very small
sections of the entirety of the search space.

The specific novel application of Evolutionary Algorithms as game-playing methods (referred to as
Rolling Horizon Evolutionary Algorithms, or RHEA) was introduced for the first time in 2013 by Perez et
al. (7). The base algorithm has been extended in several works. Gaina et al. (15) performed an in-depth
analysis of the algorithm’s main parameters (population size and individual length), generally finding that
the higher the parameter values (even reaching the extreme of Random Search), the better RHEA performs
across several games; this work further highlights an increase in performance with the increase of the avail-
able budget and correspondingly higher parameter values. Different population initialisation methods were
explored in (16); this work was important in highlighting the benefit of using different options in different
game types, as some games saw increased performance with greedy initialisation, while others preferred a
statistical approach instead. Furthermore, Gaina et al. tested in (17) various combinations with other tech-
niques, which further pinpointed not only the difference in performance of certain parameter configurations
across the different games, but also that the RHEA parameter space was already being expanded beyond
the possibility of exhaustively exploring all parameter combinations. Some of these enhancements were
further tested by Santos et al. (156) in General Video Game AI (GVGAI) and by Tong et al. (157) in Mu-
JoCo’s physical control tasks, both with great success. Finally, a study on dynamically adjusting individual
length based on the fitness landscape observed during evolution (19) shows that some parameters might be
conflicting with each other and cause poor performance in some games and suggests a need for carefully
constructed parameter search spaces.

The work is carried out within the domain of general video game playing, which focuses on finding
general-purpose Artificial Intelligence players that are able to play any game, even those unseen previously.
The concepts behind this could be further extended to general AI which is able to solve any given task (as
opposed to any given game), as methods developed for games have been shown to be applicable to wider
domains, such as chemistry (158). Two large categories of players can be differentiated in this domain:
planning and learning. The latter requires training for several episodes on a game before it can figure out
how to play it, which is often an expensive process leading to narrow results: the agent trained for one
game would be unlikely to be able to play another without significant training on the new game. The former
category, which RHEA belongs to, refers to methods which work online, during the game, to search for the
appropriate solutions. These methods require a forward model to be able to simulate possible futures and
effects of their actions. Although planning methods are more generally applicable, they face the drawback
of the lack of a FM in some games, as this is not always feasible. The problem of learning any game’s
model is an active research area (159) which would make our methods even more widely applicable, even
in complex commercial games; however, in this work we apply our algorithms to games which do have a
model available.
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6.1 Offline
The work in this section was submitted to IEEE TOG (July 2020):

R. D. Gaina, S. Devlin, S. M. Lucas, and D. Perez-Liebana, “Rolling Horizon Evolutionary Algorithms for
General Video Game Playing,” IEEE Transactions on Games, 2021.

Game-playing Evolutionary Algorithms, specifically Rolling Horizon Evolutionary Algorithms, have
recently managed to beat the state-of-the-art in win rate across many video games. However, the best re-
sults in a game are highly dependent on the specific configuration of modifications introduced over several
papers, each adding additional parameters to the core algorithm. Further, the best previously published pa-
rameters have been found from only a few human-picked combinations, as the possibility space has grown
beyond exhaustive search. In this section, we use a parameter optimiser, the N-Tuple Bandit Evolutionary
Algorithm, to find the best combination of parameters in 20 games from the General Video Game AI Frame-
work. Further, we analyse the algorithm’s parameters and some interesting combinations revealed through
the optimisation process. Lastly, we find new state of the art solutions on several games by automatically
exploring the large parameter space of RHEA.

In this context, Monte Carlo Tree Search (MCTS) had for a long time represented the state-of-the-
art in general video game playing. However, RHEA has been shown to outperform MCTS in multiple
games in some of its variations (17), while other combinations of modifications led to significantly worse
results. As highlighted by Lucas et al. (34), there can be a large difference in performance for the same base
algorithm when using different parameters, and optimisation is essential. Ashlock et al. (149) emphasise
this in the context of general game playing, where one single method (or single parameter configuration,
in our approach) is unlikely to achieve high performance across all possible tasks. Our specific problem
is additionally highly noisy: most games are stochastic and the same sequence of actions in a game could
lead to different outcomes; furthermore, the algorithm itself is stochastic and may produce different outputs
given the same game state.

In this section we use the N-Tuple Bandit Evolutionary Algorithm (NTBEA) (31) for optimising RHEA
parameters, an algorithm which has shown robust high performance in noisy optimisation problems, even
when compared with alternatives. It features high sample efficiency, fast convergence and good scaling for
large search spaces (34). Simulations of AI players on a multitude of games can be very expensive, there-
fore sample efficiency is key, making NTBEA suitable for optimising RHEA parameters. The algorithm
has been previously successfully employed in several noisy optimisation problems, such as tuning game
parameters (160) as well as AI game player parameters (133; 34; 161). A highly adaptive system which can
optimise its parameters and structure so as to achieve best performance in various games could easily feed
into a generic lifelong learning system such as that presented in (24).

A summary of the contributions in this section is as follows:

1. We perform an in-depth analysis and optimisation of the algorithm’s parameters with respect to its
performance across the various games tested.

2. We find new configurations which outperform the previous state-of-the-art on a range of GVGAI
games.

6.1.1 N-Tuple Bandit Evolutionary Algorithm
NTBEA is a model-based optimiser based on an Evolutionary Algorithm. It begins by randomly initialising
a solution o, or with a given solution (referred to as seed, and the process as seeding the algorithm). It then
evaluates one solution at a time, with the fitness function determined by the specific application. Small
random noise is added to each solution’s fitness value to distinguish between equally good solutions.

n-tuple Model Update

The internal n-tuple model is then updated. In this context, an n-tuple is a list of length n, containing
non-repeating numbers from 0 to L − 1 (where L is the solution length); these numbers map to indexes in
the solution evaluated. Statistics on all possible n-tuples are registered in the update step, keeping track of
the number of times each n-tuple was sampled, how many times the indexed genes in the solution evaluated
were observed to have those specific values, and the fitness value of the solution evaluated. We use 1, 2 and
L values for n.

For example, consider solution (2, 3, 0, 0, 1) with fitness value 5. The 2-tuple (0,3) looks at indexes 0
and 3 in the solution, which map to specific gene values (2, 0). In the model, the number of times the (0,3)
tuple was sampled is increased by 1, the number of times it mapped to gene values (2,0) is increased by 1,
and value 5 is added to the sum value of the tuple. Similarly, all other combinations of 1, 2 and L tuples are
added to the model as well.
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Neighbourhood Evaluation

In the next step, several neighbours (x = 50) of the solution are generated through uniform random mu-
tation, with probability 1/L. The fitness of each neighbour is estimated based on the n-tuple model: all
n-tuples are extracted from a neighbour o (let m be the total number of n-tuples), and statistics for each
n-tuple are looked up in the internal model. For each n-tuple, we can then calculate its UCB value: if
Tj is the jth n-tuple, then Q(Tj) is the average value observed for the n-tuple, N(Tj) is the number of
times the n-tuple was sampled, and N(Tj , o) is the number of times the n-tuple was sampled and indexed
the same gene values as in solution o. The constant k = 2 sets the focus of the algorithm, whether more
exploitative or more exploratory. To obtain the overall UCB value for solution o, we calculate the average
of UCB values for all n-tuples and add small random noise (maximum ε = 0.5) to randomly break ties (see
Equation 6.1).

UCBo =
1

m

m∑
j=1

(
Q(Tj) + k ×

√
lnN(Tj)

N(Tj , o)

)
+ noise (6.1)

Repeat

Finally, we choose the neighbour with the highest UCB value to be the next solution evaluated (o′) and
the process repeats for a set number of iterations. The final solution recommended is the one with the
highest Q(T ) value averaged over all n-tuples. We refer the reader to (133) for more details on the NTBEA
algorithm.

6.1.2 Experiments
In this study, we consider all RHEA parameters described in Section 3.1. Given the large number of
parameter combinations, estimated at 5.36 × 108, it would take a significant amount of time to test each
combination exhaustively in several games and with repetitions for statistical significance. Therefore we
choose to analyse the different parameters indirectly through the evolutionary process described by an N-
Tuple Bandit Evolutionary Algorithm (NTBEA). We ran NTBEA for 1500 iterations individually on each of
the 20 games described in Section 2.1.2 to perform a search through the RHEA parameter space depicted in
Figure 6.1, obtaining a (potentially different) parameter set recommendation for each game. Each individual
evaluated by NTBEA would therefore be one parameter combination (18 individual length). We seed
NTBEA with the previous state-of-the-art (SotA) parameter configuration for each game (see rows with
citation in Table 6.1). To evaluate each individual, we run RHEA with the specific parameter configuration
on the given game, once in each of the 5 levels of the game and we use the average win rate on the 5 levels
as individual fitness. To test the final configuration, we run it 100 times on the given game (20 times per
level) and we additionally test the tuned parameter configuration on the entire set of 20 games, similarly
with 100 runs per game.

All experiments were run on IBM System X iDataPlex dx360 M3 Server nodes, with one game per
node, having one Intel Xeon E5645 processor core allocated to it and a maximum of 3GB of RAM of JVM
Heap Memory. The runs took between 43 hours and 6 days to complete, including NTBEA tuning and final
configuration testing; one run of a game can take up to 2000 game ticks to complete, with 1000 forward
model calls per tick for AI decision-making (plus game engine computations), the fastest game ending after
50 game ticks on average. The budget for all agents was set as 1000 forward model calls instead of time
limits (which averages as the equivalent of 40ms in our tests), in order for the experiments to be consistent
and replicable across different machines.

In the following sections we aim to analyse not only the performance of the optimised agents on the
different games, but also the parameter space explored during the evolution and the parameter choices
themselves. We hypothesise that similar games would lead to similar choices in parameters, which would
differ across game types.

This section presents and discusses the most interesting aspects observed, but all results, plotting scripts
and additional figures are available on Github1. We refer the reader to (15; 22) for a comparison of this
algorithm with MCTS.

Optimisation Effectiveness

We first discuss the effectiveness of the optimisation. We summarise in Table 6.1 the results obtained on
all 20 games used for tuning RHEA parameters with NTBEA. For each game, we present the parameter
configuration of the previous state-of-the-art (previous highest win rate recorded), its win rate and standard

1https://github.com/rdgain/ExperimentData/tree/NTBEA-RHEA-2019
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Population Size
{1, 10, 15, 20}

Individual Length
{5, 10, 15, 20}

Dynamic Depth
{False, True}

Offspring Count
{1, 10, 15, 20}

Number Elites
{0, 1}

Initialisation Type 
{Random, 1SLA, MCTS}

Genetic Operator
{Crossover Only, Mutation Only,

Crossover + Mutation}

Selection Type <Crossover>
{Rank, Tournament, Roulette}

Crossover Type <Crossover>
{Uniform, 1-point, 2-point}

Mutation Type <Mutation>
{Uniform, n-Bit, Softmax,

Diversity}
Fitness Assignment

{Last, Delta, Average, Min,
Max, Discount}

Fitness Diversity Weight 
{0.0, 0.5, 1.0}

Frame Skip 
{0, 5, 10}

Frame Skip Type <!0>
{Repeat, Null, Random,

Sequence}

Shift Buffer
{False, True}

Shift Buffer Discount <True>
{0.9, 0.99, 1.0}

MC Rollouts Length
{0.0, 0.5, 1.0, 2.0}

MC Rollouts Repeat <!0.0>
{1, 5, 10}

Tournament Size <Tournamnet>
{PopSize/2, PopSize/4 ...}

Mutation Rate <Uniform>
{1/IndLength, 2/IndLength ...}

Diversity Type <Diversity>
{Genotype, Phenotype}

n <n-Bit>
{1, 2, 3  ...}

Adjustment Delay <True>
{5, 10, 20 ...}

Lower Threshold <True>
{0.02, 0.04, 0.06, 0.08 ...}

Change Step Size <True>
{1, 2, 5, 10 ...}

Upper Threshold <True>
{0.85, 0.9, 0.95 ...}

Diversity Type <!0.0>
{Genotype, Phenotype}

[3]

[3]

[4]

[6]

[7]

[7] [7]

Budget % <MCTS>
{0.25, 0.5, 0.75 ...}

Node Visit Cap <MCTS>
{1, 3, 5 ...}

C constant <MCTS>
{1, , 2 ...}

 <Discount>
{0.7, 0.8, 0.9 ...}

Figure 6.1: Parameter search space, size 5.36 × 108 (excluding dark grey boxes). Possible values for
a parameter in curly brackets, default value in underline green. Parameters not in the 1st column are
dependent on others (denoted with arrows from parent to dependent; parent value required for dependent to
affect phenotype is noted in blue angled brackets). Dark grey parameters are not included in the experiments
for this paper (default values used instead). In yellow parameters previously analysed in literature, with
citation.

error; similarly, we present the optimised configuration for each game. Out of 20 games, 8 show worse
results after optimisation, 6 observe similar results and in 6 we see an increased win rate. There are many
games in which the win rate remains at or very close to 0%. This set of games (“Dig Dug”, “Lemmings”,
“Roguelike”) remains too difficult for these methods to solve without more game-specific information or
better exploration policies.

There are also several games which see win rates at, or very close to, 100% (“Intersection”, “Aliens”,
“Infection”, “Chopper” and “Plaque Attack”). We do not see a decrease in performance in these games after
optimisation (but a definite increase in “Plaque Attack” to 100% with several modifications in parameter
choices, including using dynamic depth, 1SLA initialisation and random frame-skip).

We do see several games improving performance: the win rate in “Seaquest” increases from 65% to 84%
by employing longer individual lengths, a larger population size, a shift buffer and MC rollouts. “Missile
Command” sees an increase in win rate from 78% to 86% with a shift buffer, MC rollouts and a discounted
fitness assignment. And performance in “Camel Race” increases from 11% to 41% by using repetition
frame-skip, a shift buffer and MC rollouts, among many configuration modifications. These 3 games do
not immediately show common features as per Table 2.1, with “Seaquest” standing out due to its stochastic
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Figure 6.2: Progression of solution fitness in the internal n-tuple model during NTBEA optimisation process
in 2 games, “Missile Command” (left) and “Intersection” (right): plotting the value in the model for the
solution evaluated at each iteration (light blue). The darker line indicates the value in the model for the
seeded solution at each iteration (after n-tuple updates). Vertical lines indicate when the algorithm changes
the best solution recommendation, based on its internal n-tuple model.

nature and dense environment, while the other two feature sparser deterministic environments.
We see a considerable decrease in performance in three of the games: “Butterflies” (from 96% to 90%),

“Escape” (from 46% to 32%) and “Modality” (from 37.5% to 25%). As NTBEA was seeded with the
previously best solution, we believe these are cases in which the noisy fitness evaluation was shown to
be most harmful. Solutions are only evaluated once in each level of a game to obtain their true fitness
value, while the final solutions are evaluated 20 times per level. Therefore, it is likely that the initial
stochastic evaluation of the seed was misleading, leading the algorithm towards other areas of the search
space. Additionally, since the value used in solution recommendations by NTBEA is based on its internal
n-tuple model, this could also be a problem of credit assignment: all n-tuples are weighed equally, whereas
they do not equally impact the phenotype. Future work will consider a better approach for tackling these
difficult environments. A similar smaller decrease is also observed in “Lemmings” and “Bait” - all of
these, except for “Butterflies”, are games with puzzle elements to them, which appear to be most difficult
to optimise and estimate solution quality for, as they require more precise action sequences, with one move
possibly making the game unsolvable, and therefore more precise evaluation. For these games, increasing
the number of evaluations used in the fitness function would likely reduce the noise, as would changing the
balance in the UCB calculations towards exploitation.

Finally, we highlight NTBEA’s optimisation process progression in two games in Figure 6.2, “Missile
Command” and “Intersection”. Both of these games see an upwards trend in solution quality, and they rep-
resent the games with the slowest and fastest convergence, respectively. We can observe that the algorithm
settles on the solution for “Intersection” very quickly, before iteration 100, whereas it uses almost all com-
putation budget for “Missile Command” to find the best option. This could be an indication of not only game
difficulty, but also strategic depth: most parameter options work well and obtain very good performance in
“Intersection”, while “Missile Command” poses a challenge at which not many options are successful and
the finding of those few good configurations is more difficult. We note that the upward trend after settling
on the best solution comes from the value of that best solution improving over time as more samples are
added into the n-tuple model. Most games converged to a stable solution recommendation before the 1500
budget was exhausted. However, we expect solution quality to improve further with even more resources
(e.g. Figure 6.2 shows Missile Command solution quality increasing and finding new bests up to very close
to the given budget). Due to stochastic evaluations, different runs of the optimisation process may produce
different results.

Overall, the game-specific optimised agents achieve win rates of below 50% when tested on the entire
set of games, which is not surprising in the general game playing context; the agents do not use any game-
specific information. The best performing tuned agent is that for “Seaquest” (53.4 average win rate on
all 20 games), which shares different features with several other games; this appears to make the specific
configuration more generally applicable than the others.

1-tuple Analysis

Next, we look into the parameter space explored by NTBEA, starting with 1-tuples, or analysing each
parameter and its preferred values in isolation in the different games tested; we use the term prefer to mean
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Table 6.1: RHEA best win rate (and standard error) recorded in all games. “opt” rows show NTBEA
optimisation results, other rows show previously best recorded (with corresponding citation, highlighted in
yellow). Parameters using default values (as per Figure 6.1) highlighted in green. Enhancements include
values for dependants in brackets. Win-rates in bold are the higher values observed, if different.

Parameters
Numerical NominalGame Win Rate

P.Size I.Len Offspring Elite Init. Selection Crossover Mutation Fit.
Enhancements

0% (0.00) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)0
0% (0.00) 1 20 15 1 MCTS Rank Uniform 2-bit Last SB(0.9); MC(0.5,1); Skip(Rep) opt
4% (1.98) 10 15 10 1 RND Tourn. Uniform Uniform Last DD (19)1
0% (0.00) 10 10 1 0 RND Tourn. 1-point 2-bit Last SB(0.9); MC(0.5,5); Skip(Rep); DD opt
0% (0.00) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)2
0% (0.00) 1 20 15 1 MCTS Rank Uniform 2-bit Last SB(0.9); MC(0.5,1); Skip(RND) opt

100% (0.00) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)3
99% (0.99) 10 15 20 1 1SLA - - Uniform Disc. SB(0.9); MC(1.0,5); DD opt
10% (3.00) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)4
10% (3.00) 20 10 15 0 1SLA - - 2-bit Disc. SB(0.9); DD opt
13% (3.39) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)5
3% (1.70) 10 20 20 1 RND Tourn. 2-point - Average MC(0.5,1) opt

11% (3.13) 1 10 10 1 RND Tourn. Uniform Uniform Last MC(0.5,10) (17)
6 41% (4.92) 15 15 1 1 MCTS Tourn. Uniform Diversity Disc. SB(0.99); MC(1.0,5); Skip(Rep); Fit.Div(0.5) opt

46% (4.98) 10 15 10 1 RND Tourn. Uniform Uniform Last MC(0.5,1) (17)7
32% (4.665) 20 10 10 0 RND - - Diversity Disc. SB(0.9); Fit.Div(0.5) opt
12% (3.25) 10 15 10 1 RND Tourn. Uniform Uniform Last SB(0.9); MC(0.5,10) (17)8
11% (3.13) 10 20 15 0 1SLA Rank 2-point 2-bit Max SB(0.99); MC(2.0,5) opt
20% (4.00) 10 15 10 1 RND Tourn. Uniform Uniform Last SB(0.9); MC(0.5,10) (17)9
19% (3.923) 10 20 10 1 RND Tourn. 1-point Uniform Max SB(0.99); MC(1.0,5) opt
78% (3.76) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)

10 83% (3.76) 10 20 10 1 1SLA Tourn. 1-point - Disc. SB(0.99); MC(2.0,1); Skip(Null); DD opt
55% (5.00) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)

11 56% (4.97) 20 15 10 1 RND Tourn. Uniform Uniform Disc. SB(0.99); MC(2.0,5); Skip(RND); DD opt
38% (4.42) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)

12 25% (4.33) 10 20 15 0 RND Tourn. 1-point Diversity Max MC(0.5,10); Skip(Seq); DD opt
78% (4.18) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)

13 86% (3.47) 15 20 15 1 RND Tourn. 1-point Softmax Max SB(0.9); MC(2.0,1) opt
99% (1.00) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)14

100% (0.00) 15 20 1 1 1SLA Rank 1-point Diversity Max SB(1.0); MC(2.0,1); Skip(RND); DD opt
65% (4.77) 1 5 1 1 RND Tourn. Uniform Uniform Last SBer(0.9) MC(0.5,10) (17)15
84% (3.66) 20 20 1 1 RND Rank Uniform - Average SB(0.9); MC(2.0,1) opt
100% (0.00) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)16
99% (0.99) 15 20 1 0 RND - - 2-bit Last SB(0.99); MC(0.5,10); Skip(RND); DD opt
100% (0.00) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)17
100% (0.00) 15 20 20 0 RND - - 2-bit Disc. SB(0.9); DD opt
96% (1.92) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)18
90% (3.00) 15 5 20 0 RND Roulette 2-point - Disc. SB(0.99); MC(2.0,5) opt
100% (0.00) 10 15 10 1 RND Tourn. Uniform Uniform Last - (15)19
100% (0.00) 10 5 1 1 1SLA Roulette 1-point 2-bit Disc. MC(2.0,5); DD opt

the value achieves highest win rate. We group together the solutions in which the parameter had the same
value chosen and plot the average fitness of these solutions against parameter values. We note that the
parameter may have not had a great influence in the fitness obtained, and we exclude the data points where
the parameter had no influence at all, in the case of dependent parameters (see Figure 6.1). The resulting
heatmaps show the fitness values observed for each parameter values, as well as how many times each
parameter value was explored by NTBEA. The latter is given by the circle size in the figures presented;
we cap the maximum number of occurrences of a data point at 100 and normalise all values in [0, 1] for
visualisation purposes.

17 games prefer the shift buffer turned on and to keep 1 elite between generations. Additionally, as
previously seen in (15), most games prefer long individual length and large population sizes. 17 games
further prefer the agent employing Monte Carlo rollouts at the end of its individual evaluation: “Chopper”,
“Seaquest” and “Missile Command” in particular prefer very long rollouts (2.0 × L, see Figure 6.3); this
could be due to these three games featuring different types of rewards and delays in obtaining rewards.
The other similar game in terms of rewards, “Intersection”, does not show a particular preference in this
parameter, achieving 1.0 fitness in all values.

In terms of genetic operators, most games prefer the agent to use both mutation and crossover in its
evolutionary process. However, there are some exceptions: “Chopper” and “Plaque Attack” prefer to use
mutation only, whereas “Missile Command” prefers options that do include crossover and more disturbance
in its offspring (see Figure 6.4). Although these games are seen as similar in (3) and obtain high winning
rates, the way the agents achieve their good performance does differ in these games, suggesting methods
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Figure 6.3: 1-tuple: rollout length percentage parameter. Colours show average fitness for each data point,
with blue being highest (1.0) and white being lowest (0.0). Each data point is highlighted with a black
circle; the larger the circle, the more times that parameter value was sampled.

Figure 6.4: 1-tuple: genetic operator parameter. 0 - crossover and mutation. 1 - mutation only. 2 - crossover
only.

Figure 6.5: 1-tuple: offspring count parameter.

Figure 6.6: 1-tuple: frame-skip type parameter. 0 - repeat. 1 - null. 2 - random. 3 - sequence.

based on win rates could be improved by taking into account agent-based features.
When looking at the number of offspring (see Figure 6.5), “Survive Zombies”, “Missile Command” and

“Chopper” prefer more. These games are quite similar in terms of features (win/lose conditions, level sizes,
enemy NPCs) and are clustered together in (3). However, in the same cluster, “Butterflies” and “Plaque
Attack” do not show strong preference here - as opposed to the others, these two games have a smoother
score progression, while “Missile Command” and “Chopper” show more delay in getting rewards, more
actions are required from the player to find particular rewarding scenarios. “Seaquest” is placed in a similar
cluster by (1), but it shows opposite preference, for less offspring instead. In this game we see large
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Figure 6.7: 2-tuple: individual length and population size. Colours show average fitness for each data
point, with blue being highest (1.0) and white being lowest (0.0). Each data point is highlighted with a
black circle; the larger the circle, the more times that combination of values was sampled.

discontinuous rewards as well as many smaller dense rewards - the larger variety in types of rewards could
be what leads to favouring less solutions sampled to increase the number of generations in the evolutionary
process, and to gain better insight into which reward type is preferable.

Lastly, we highlight that “Intersection” and “Wait for Breakfast” are the only games that benefit from
null frame-skipping (see Figure 6.6) - in both of these games it is essential to wait for specific events
to happen (a way in the road to clear, or the waiter to arrive). “Plaque Attack” prefers sequence frame-
skipping, as plans evolved are precise enough in line with the constant stream of rewards. And “Camel
Race” prefers repeat or sequence, with more frames skipped being better, which are effective strategies
of exploring large sparse environments. Most other games dislike frame-skipping and prefer a more fine-
grained search; however, we note that the search space for this parameter is very coarse and it might be that
more games could benefit from some or dynamic frame-skipping.

2-tuples Analysis

Similarly as with 1-tuples, we can look at how combinations of parameters affect overall solution fitness.
In this section we group together solutions which had the same values for each parameter combination,
while eliminating the data points where either one or both of the parameter values did not impact solution
phenotype, in case of dependent parameters (see Figure 6.1). We plot each parameter against all others
in the different games tested, each data point representing the average fitness observed in the respective
group of solutions. We further add black circles on each data point to highlight the number of times each
combination was explored by NTBEA during the optimisation process.

The first thing that stands out in all resulting figures is that NTBEA explores the best combinations
the most, while mostly ignoring less promising options. This can be seen as a direct confirmation of the
effectiveness of the bandit-based approach, but also as a potential point of improvement: due to the nature
of the very noisy optimisation, it might be beneficial to obtain more accurate estimates of some data points
which do not immediately stand out as the best: as discussed in a previous section, it was the case in
several games that the optimised solution ended up performing worse than the initial solution given to the
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Figure 6.8: 2-tuple: mutation type and crossover type.

algorithm, which could have been avoided had a more accurate evaluation of solution quality been done.
In Figure 6.7 we can observe the combination of individual length L and population size P parameters.

We have previously observed that longer individuals lead to higher fitness values, and similar for larger
population sizes. It is interesting to see that this holds true also for the combination of L and P , although
specific combinations achieve better results in some games (such as L = 20 and P = 15 in “Chopper”).

Another interesting parameter combination to discuss is that of mutation type and crossover type, shown
in Figure 6.8, which largely decides how offspring are created at each generation. Although the overall
fitness of solutions differs, games “Hungry Birds” and “Plaque Attack” show a similar distribution of good
or bad quality combinations: in particular, 1-point crossover does not agree with diversity mutation, and
2-point crossover does not agree with bit mutation. This could largely be due to the specific modifications
n-point crossover wishes to generate, which are modified unexpectedly by bit mutation. However, these two
games singled out here do not appear to have much in common according to our feature descriptions and
clustering in Table 2.1; it is thus interesting to find game similarities beyond those given by traditionally-
employed features.
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6.2 Online

The work in this section was published at IEEE CoG 2020:
R. D. Gaina, C. F. Sironi, M. H. Winands, D. Perez-Liebana, and S. M. Lucas, “Self-Adaptive Rolling

Horizon Evolutionary Algorithms for General Video Game Playing,” in IEEE Conference on Games
(CoG), 2020, pp. 367–374.

As we observed performance improvement and much variety in parameters chosen in the GVGAI games
in the previous section, the next step is to try this optimisation process online, while the agent is playing
the game, to encourage fast adaptation to different situations. Previous research has looked at such online
tuning of MCTS players, exploring some of the parameters controlling the decision-making process of this
algorithm during a single play-through of a game (32; 131). This work uses each iteration in the MCTS
algorithm as a data point evaluated for a specific configuration of parameters, with new set of parameters
chosen for every iteration based on the values returned. Thus, the optimiser and the search algorithm
interleave execution to play a game: the search algorithm attempts to find the best solution for the game,
while the optimiser attempts to find the best set of parameters for the search algorithm. No such method
had been tried in evolutionary agents previous to this study.

This section describes a proposal to adapt the MCTS optimisation method to RHEA in a similar fashion:
each RHEA iteration (a full generation of individual) would represent a data point for the optimiser, which
will aim to maximise the fitness improvement between generations with the search parameters it selects.
Due to the optimisation problem focused on the improvement from one generation to the next, we limit
the set of parameters in this study to those which impact the generation of new individuals most directly:
genetic operator, crossover type, selection type, mutation type and mutation transducer (see Section 3.2 for
details on each and Table 6.2 for a summary).

Several optimisers were tried previously for this purpose with MCTS agents (32; 131) and we adopt all
to study not only their performance in combination with RHEA, but also their differences and individual
efficacy. The most successful previous approaches were based on evolutionary algorithms: a standard
Genetic Algorithm (GA) and a N-Tuple Bandit Evolutionary Algorithm (NTBEA) (133), as seen previously
used in offline tuning. We further add to this set of optimisers Naı̈ve Monte Carlo (NMC) (162), which
performed best for MCTS out of all non-evolutionary techniques tested. Simple baselines are included
as well in the form of a Multi-Armed Bandit (MAB), which does not take into account the relationships
between parameters and therefore the combinatorial nature of the problem, and Random (RND), which
simply selects random sets of parameters without storing any statistics of their values.

The contributions of this work are twofold. First, we propose an adaptation of online tuning methods for
RHEA and test the performance of the tuned RHEA agents on a variety of different problems, highlighting
strengths and weaknesses. Second, we perform an in-depth analysis of the algorithm parameters from the
perspective of the statistics gathered by the optimisers, with the aim of obtaining more insight into the
inner-workings of the algorithm.

6.2.1 Approach

In order to implement a self-adaptive RHEA agent, the parameter space has to be defined and the online
parameter tuning method used for MCTS has to be adapted. Moreover, optimisers that decide how to
allocate the available samples to evaluate different parameter combinations are necessary.

RHEA Parameter Space

Although several modifications and parameters of RHEA have been previously studied (15; 16; 17; 19), we
focus here on those parameters which have most impact in any one iteration of the algorithm - that is, those
that impact the generation of offspring, as summarised in Table 6.2.

Genetic operator. This parameter controls which genetic operators are applied: crossover only (off-
spring are not mutated), mutation only (offspring are obtained by directly mutating each individual in the
population), or both (offspring are generated through crossover, and then mutated). The rest of the parame-
ters may only have an effect on the phenotype if this parameter has a particular value.

Selection type. This operator is used to select parents for crossover. Roulette selection chooses individ-
uals based on probabilities directly proportional to their fitness. Rank selection chooses individuals based
on probabilities inversely proportional to their rank in the ordered list of individuals (best individuals first).
Tournament selection randomly chooses 40% of individuals, then the best out of the random selection.

Crossover type. This operator is used to combine selected individuals and generate offspring. Uniform
crossover randomly selects a value for each gene from either of the parents. n-point crossover divides the
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Table 6.2: Parameter Search Space, total size 270, or 99 valid combinations if parameter dependency is
taken into account.

Idx Name Values
0 Genetic Operator Crossover + Mutation, Mutation

Only, Crossover Only
1 Selection Type Rank, Tournament, Roulette
2 Crossover Type Uniform, 1-point, 2-point
3 Mutation Type Uniform, 1-Bit, 3-Bits, Softmax,

Diversity
4 Mutation Transducer False, True

Algorithm 7 RHEA action selection with online parameter tuning.
1: function GETACTION(T , λ, µ)
2: Input: Tuner T , population size λ, elite size µ.
3: Output: First action of best individual in the population
4: pop← GETCURRENTPOPULATION()
5: order individuals in pop by decreasing fitness
6: while time not elapsed do
7: ~p← T .SELECTPARAMVALUES()
8: SETPARAMVALUES(~p)
9: offspring ← GENANDEVALOFFSPRING(pop[0,...,µ])

10: order individuals in offspring by decreasing fitness
11: r ← offspring0.fitness − pop0.fitness
12: T .UPDATEVALUESTATS(~p, r)
13: pop[µ+1,...,λ] ← offspring [0,...,λ−µ]
14: order individuals in pop by decreasing fitness
15: return pop0.GETFIRSTACTION()

individual into n + 1 slices and alternatively selects the corresponding slices from each parent; we use
n = {1, 2}.

Mutation type. This operator is used to modify offspring. Uniform mutation changes each gene of the
individual with a probability of 1/L. n-bit mutation changes n random genes; we use n = {1, 3}. Softmax
mutation uses Equation 6.2 to bias mutation towards the beginning of the individual, where changes in genes
most affect the phenotype. Diversity mutation logs values explored for all genes and chooses to mutate the
gene explored the least, to its least visited value.

Softmax(xi) =
exp(xi)∑
j exp(xj)

(6.2)

Mutation transducer. This parameter is used to decide new values for mutating genes (no effect in
diversity mutation). If this flag is off or the gene is first in the individual, the gene will take a random new
value. Otherwise, it will take the value of the previous gene in the sequence; this aims to decrease the
jitteriness of the agent, by encouraging action repetition.

Online Parameter Tuning for RHEA

The parameters we are aiming to tune in RHEA control how the entire population of individuals is evolved.
Therefore, we need to use the entire population to evaluate the quality of a parameter combination. Algo-
rithm 7 shows how online parameter tuning is implemented by the RHEA agent when it has to choose an
action for a given game state. Note that the procedure assumes that the RHEA population has already been
initialised and evaluated once. Until the search budget expires, the procedure repeats the following steps:

1. Select a new combination of parameter values using the tuner T (line 7).

2. Set the tuned parameters to the selected values (line 8).

3. Using the elite individuals in the current population, generate new offspring, evaluate (line 9) and
order them by decreasing fitness (line 10).

4. Compute the payoff r for the selected combination of parameter values as the difference between
the fitness of the best individual in the offspring and the fitness of the best individual in the previous
generation (line 11).
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5. Update the statistics of the selected parameter combination using the computed payoff (line 12).

6. Update the population by replacing the worst λ−µ individuals with the generated offspring and order
it by decreasing fitness (lines 13 and 14).

When the budget expires, the first action of the best individual in the population is returned (line 15).
Note that, to compute the payoff of a parameter combination, we only consider the fitness of the individ-

uals in the offspring and not of the individuals in the entire new population. This is because the parameter
values set for an iteration of RHEA only influence how such offspring is generated. Moreover, to compute
the payoff of a combination of parameter values we consider only the best individual in the offspring and
in the population, because we are interested in finding the parameters that can generate the best possible
individual, even if the rest of the population has a low fitness. The action that will be played in the real
game is taken from such individual, therefore it will be the only individual that will influence the real game.

Multi-Armed Bandits

The MAB problem (130) is characterised bym independent arms, each of which is associated with a reward
distribution. When an arm is played, a reward is obtained as a sample of the corresponding distribution.
The goal of a sampling strategy for a MAB is to maximise the sum of rewards obtained by successive
plays of the arms. Thus, the strategy has to balance exploration of less sampled arms in order to learn their
distribution, with exploitation of arms that produced a high reward. A variety of sampling strategies have
been proposed. One of the most used is UCB1 (130), which, in each iteration, selects the arm a∗ as shown
in Equation 6.3.

a∗ = arg max
a∈A

{
q̄a + C ×

√
lnn

na

}
(6.3)

Here, A is the set of available arms, q̄a is the average payoff over all the plays of arm a, n is the total
number of samples from arms, na is the number of samples from arm a, and C is the constant that controls
the balance between exploitation of good moves and exploration of less visited ones.

Optimisers

The parameters of a game-playing agent can be seen as a vector. Therefore, the problem of tuning these
parameters for each new game consists in searching the optimal vector of parameters values in a combi-
natorial search space. Previous work (131) defined this problem as a Combinatorial Multi-Armed Bandit,
characterised by the following three components:

• Vector of d variables, ~P = {P1, ..., Pd}, where each variable Pi can take mi different values Vi =
{v1i , ..., v

mi
i }.

• Reward distribution R : V1 × ... × Vd ← R that depends on the combination of values assigned to
the variables.

• Function L : V1 × ...× Vd → {true, false} that determines which combinations of values are legal.

There are various optimisers that decide which combinations of parameter values should be evaluated,
how many times and in which order (32; 131). The ones considered in this study are described below.

Multi-Armed Bandit (MAB) A straightforward solution to deal with a combinatorial multi-armed bandit
problem is to translate it to a Multi-Armed Bandit (MAB) (130). Each arm of the MAB corresponds
to a possible legal combination of values for the parameters. Therefore, selecting the next combination of
parameter values to evaluate corresponds to choosing one arm of the MAB. Here, UCB1 is used as sampling
strategy for the MAB, with exploration constantCMAB = 0.7 (this value is taken from previous work (135)).
Note that, differently from other optimisers used here, the MAB optimiser ignores the information on the
combinatorial structure of the parameter values. This strategy does not exploit the fact that often a value
that is good (or bad) for a parameter in a certain combination of values, is also good (or bad) in general or
in many other combinations.
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Naı̈ve Monte Carlo (NMC) First proposed to play real-time strategy games (162), it was later applied
as an optimiser to tune MCTS parameters online (32; 131). The NMC optimiser is based on the naı̈ve
assumption that the reward associated to a combination of d parameter values, ~p = 〈p1, ..., pd〉, can be ap-
proximated by a linear combination of the rewards associated to single parameter values pi (i ∈ {1, ..., d}).
This means R(~p) ≈

∑d
i=1Ri(pi).

When choosing a combination of parameter values, NMC alternates between exploration and exploita-
tion. In a given iteration, NMC performs exploration with probability ε0 and exploitation with probability
(1 − ε0). During exploration, for each parameter being tuned NMC considers a local multi-armed bandit
problem, where each arm corresponds to one of the possible values for the associated parameter. A value
for each parameter is selected independently from each local multi-armed bandit using the UCB1 sampling
strategy with exploration constant CL. During exploitation, NMC considers a global multi-armed bandit,
where each arm corresponds to a possible combination of parameter values. A combination is selected from
the global multi-armed bandit using the UCB1 sampling strategy with exploration constant cG. At the start
of the execution of NMC, the global multi-armed bandit has no arms. A new arm is added every time a
new combination of parameter values is generated during exploration with the local multi-armed bandits.
After evaluating a selected combination of parameter values, NMC uses the obtained payoff to update both
the statistics of the combination in the global bandit and the statistics of each single parameter value in the
local bandits. In these experiments, the settings for this strategy are the same used in GVGP to tune MCTS
in previous work (32): ε0 = 0.75, CL = 0.7, CL = 0.7.

Genetic Algorithm (GA) Genetic Algorithms (EAs) (163) are optimisation algorithms that search for
an optimal solution by evolving a population of candidate solutions using a variety of genetic operators.
As shown in (32) and (131), a GA with population size λGA and elite size µGA can be used as optimiser
for the CMAB that represents the parameter tuning problem. A combination of parameter values can be
considered as an individual in the population and each single parameter as gene. The GA optimiser starts
with a randomly generated population of parameter combinations and then evolves it multiple times until
the computational budget expires.

During each iteration, GA first evaluates each combination in the population as shown in Algorithm
7, i.e. using it to control the generation of the new population in one iteration of the RHEA algorithm.
This means that the fitness of a combination of parameters corresponds to the payoff computed at line 11
in Algorithm 7. Subsequently, GA keeps the µGA parameter combinations with the highest fitness in the
current population (the elite) and uses them to generate the remaining λGA − µGA new combinations. Each
new combination is generated with probability pcross by uniform random crossover between two randomly
selected elite individuals, and with probability (1 − pcross) by uniformly mutating one bit of a randomly
selected elite individual. In these experiments, the settings for this strategy are the same used in GVGP to
tune MCTS in previous work (32): λGA = 50, µGA = 25, pcross = 0.5.

N-Tuple Bandit Evolutionary Algorithm (NTBEA) First proposed for game parameter tuning (31),
NTBEA has also been successfully used for offline optimisation of a game-playing RHEA agent (133) and
has been applied to online parameter tuning for MCTS (32; 131).

Like the GA optimiser, NTBEA considers each combination of parameter values as an individual and
each single parameter as a gene. In addition, NTBEA uses an N-Tuple fitness landscape model to memorise
statistics about the parameters. The implementation of the landscape model used in these experiments,
similarly to the NMC approach, keeps a local multi-armed bandit for each parameter and a global bandit
for the combination of all the parameters. The fitness model can be used to quickly evaluate a parameter
combination by computing its average UCB1 value over all the bandits. This quick evaluation is used by the
evolutionary algorithm to speed up the evolutionary process, while balancing exploration and exploitation
of the various parameter combinations.

More precisely, the NTBEA algorithm starts with a randomly generated combination of parameter val-
ues. During each iteration of the algorithm, the current combination of parameter values is used to control an
iteration of RHEA. The obtained payoff is used to update the statistics in the fitness model that correspond
to the evaluated combination. At this point, x neighbours of the evaluated combination are generated, each
by mutating the value of a randomly selected parameter in the combination. The x neighbours are evaluated
using the fitness model and the one with the highest average UCB1 value becomes the new considered com-
bination. This process is repeated until the computational budget expires. As for the other optimisers, the
settings used in these experiments are the same as in previous work (32): x = 5, CNTBEA = 0.7 (exploration
constant used to compute the UCB1 value with the fitness model).

Random (RND) The random optimiser has already been evaluated for online parameter adaptation both
in abstract games (164) and video games (135). Despite its simplicity, parameter randomisation has been
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shown to be beneficial in some games, especially when the fixed parameter settings are not optimal, or
when time settings are short. The random optimiser selects parameter combinations randomly among all
the feasible combinations of parameter values. This means that each iteration of the RHEA algorithm, and
thus the generation of each new population, is controlled by a randomly selected combination of parameter
values. This also means that no statistics collected about the quality of previously tested parameter values
or parameter combination are exploited.

6.2.2 Experimental Setup
We test the performance of each optimiser in the same 20 games from the General Video Game AI frame-
work (GVGAI (9)), as detailed in Section 2.1.2: “Dig Dug”, “Lemmings”, “Roguelike”, “Chopper”, “Cross-
fire”, “Chase”, “Camel Race”, “Escape”, “Hungry Birds”, “Bait”, “Wait for Breakfast”, “Survive Zombies”,
“Modality”, “Missile Command”, “Plaque Attack”, “Seaquest”, “Infection”, “Aliens”, “Butterflies”, “Inter-
section”. Each of these games has 5 levels, which vary the positions and presence of sprites, as well as the
map size.

We use different configurations for RHEA in this setting, varying budget, population size and individual
length. Larger values for population size and individual length allow for less iterations during the agent’s
thinking time, and therefore less data points for the tuners, but were generally shown to perform better (15).
We set the default budget for the agent to 1000 forward model calls, which is the average non-tuned RHEA
can perform in 40ms; this allows for robust results across different machines. Further experiments halve the
budget, or increase the budget by 5 times to observe tuner performance outside of GVGAI bounds and with
varying numbers of iterations. If we format tested algorithm names as “{individual length}−{population
size}−{budget}”, we obtain 6 configurations: 5-10-500, 5-10-1000; 5-10-5000; 10-15-500; 10-15-1000
and 10-15-5000. Given that there are a total of 270 possible parameter combinations (see Table 6.2), none
of the configurations are able to even sample all points at least once during a game tick, let alone gather
accurate statistics on all the points, making sample efficiency key.

Each agent (combining a RHEA configuration and an optimiser) is run 20 times on each of the 5 levels
of the 20 games, or 100 times per game. We record the final result of each game (win/loss, score and
game tick). The results are compared with current state-of-the-art (SotA) in RHEA, i.e. highest win rates
obtained by any previously explored configuration in each game; as a result, different games may have
different RHEA configurations as SotA. Given the nature of the experiment, with parameters varied in
tuned agents at every iteration, we consider these SotA results a very high bar, but a good comparison. It
is worth noting that some of the enhancements that led to SotA results (e.g. Monte Carlo rollouts (17)) are
not used in any of the tuned agents presented here, in order to increase the number of iterations available.

Further, we log the number of visits and average score for all combinations of parameters (5-tuples),
and for individual parameters (1-tuples), at every game tick, for all tuners (even if they do not use statistics,
e.g. RND).

We note that tuner statistics are not reset between game ticks. Initial experiments showed performance
to be very similar regardless of discount factor used (0.0 and 0.8 experimented with). We speculate that
this is due to the game states not varying widely from one game tick to the next and thus the statistics on
parameter choices are more generally applicable. The only exception we noted was in the game “Crossfire”,
where a discount of 0.8 showed an increase in performance; this warrants further investigation for highly
dynamic games.

6.2.3 Results and Discussion
This section presents and discusses some of the more interesting results obtained. Full results, log sum-
maries and plots are available on Github2.

Win rate

We first look at the performance of the tuned agents in the 20 GVGAI games. For the purpose of this
analysis, we only consider win rate (i.e. the agent’s ability to solve the problem). This is summarised for all
RHEA configurations and tuner combinations in Table 6.3, with a particular RHEA configuration (10-15-
1000) visualised in Figure 6.9. No agent is able to beat SotA results on all games, but win rates are largely
comparable, and there are several which do perform better in some of the games, with some interesting
cases standing out.

In the game “Crossfire”, 9 of the agents with population size 5 and individual length 10 are able to beat
SotA by up to 8%, whereas none of the other variants with increased values in RHEA configuration are able

2https://github.com/rdgain/ExperimentData/tree/RHEA-Online-Tuning-20
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Table 6.3: Results of all tuners for all RHEA configurations tested. Showing average win rate in all 20
games; average difference in win rate to RHEA SotA in games in which the tuned agent is better (∆Better)
and worse (∆Worse), with number of games in brackets. Highest win rate, highest ∆Better and lowest ∆Worse
are highlighted for each tuner.

P = 5, L = 10 P = 10, L = 15
Tuner FM Calls Win Rate ∆Better ∆Worse FM Calls Win Rate ∆Better ∆Worse

GA
500 40.80 (±8.51) 0.00 (0) 12.25 (17) 500 43.75 (±8.84) 0.00 (0) 8.78 (17)

1000 43.15 (±8.76) 0.00 (0) 11.52 (14) 1000 45.90 (±8.79) 0.00 (0) 7.09 (15)
5000 44.30 (±8.83) 3.00 (1) 10.87 (13) 5000 46.05 (±8.99) 2.00 (1) 7.52 (14)

MAB
500 43.05 (±8.49) 0.00 (0) 9.60 (17) 500 43.45 (±8.76) 1.00 (1) 9.77 (16)

1000 43.20 (±8.61) 2.00 (1) 10.82 (15) 1000 45.10 (±8.97) 1.00 (1) 7.70 (16)
5000 44.80 (±8.84) 0.00 (0) 33.90 (34) 5000 46.05 (±9.14) 2.34 (2) 7.71 (14)

NMC
500 42.20 (±8.57) 0.00 (0) 11.27 (16) 500 43.90 (±8.74) 0.00 (0) 9.14 (16)

1000 42.35 (±8.51) 0.00 (0) 10.43 (17) 1000 45.75 (±8.99) 2.34 (2) 7.60 (15)
5000 44.40 (±8.69) 3.00 (1) 8.71 (16) 5000 45.85 (±8.80) 1.30 (3) 7.94 (14)

NTBEA
500 43.05 (±8.53) 2.00 (1) 11.81 (14) 500 42.45 (±8.72) 0.00 (0) 10.31 (17)

1000 43.30 (±8.54) 0.00 (0) 9.89 (16) 1000 44.60 (±8.79) 0.00 (0) 7.78 (17)
5000 45.20 (±8.69) 8.00 (1) 8.55 (15) 5000 46.30 (±8.86) 2.00 (1) 6.27 (16)

RND
500 43.10 (±8.48) 1.00 (1) 12.56 (13) 500 43.35 (±8.81) 0.00 (0) 9.83 (16)

1000 44.75 (±8.73) 2.00 (1) 9.38 (14) 1000 45.90 (±8.91) 1.33 (3) 7.88 (14)
5000 45.15 (±8.89) 2.84 (2) 9.77 (13) 5000 45.60 (±9.02) 2.96 (3) 9.32 (13)

Figure 6.9: Win rate of all tuners (using RHEA configuration 10-15-1000), compared against RHEA state-
of-the-art.

Figure 6.10: Win rate of RND tuner, with all RHEA configurations, compared against RHEA state-of-the-
art.

to perform very well. This is thought to be largely due to the nature of the game, where long rollouts are not
needed, but more accurate statistics over several generations are beneficial instead; the tuning helps further
adapt to the highly dynamic nature of the game. Opposite to this, the larger RHEA configuration (10-15)
is able to beat SotA results in “Seaquest” and “Butterflies” in 4 agent variations each. These two games
generally benefit from longer rollouts as they feature delayed rewards (“Seaquest”) and an increasingly
sparser environment (“Butterflies”). Both of these games are similarly very dynamic and featuring a variety
of rewards and changes to the agent’s environment which require the high adaptability offered by online
tuning.

We can also observe a difference in performance when the budget is varied. Win rates generally increase
with higher budgets, with particular improvement observed in the games “Wait for Breakfast” and “Missile
Command” when the budget is set to 5000 FM calls. These games require different skills, but both show
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Table 6.4: Tuples considered best most times and Shannon entropy H(x) for all tuners, one row per game,
with RHEA configuration 5-10-1000; showing only the genetic operator 1-tuples. Parameter index and
value index correspond to order in Table 6.2 and game index corresponds to list in Section 6.2.2. Majority
agreement across tuners highlighted for 1-tuples.

GA MAB NMC NTBEA RND
G 5-tuple : H(x) 1-tuple 5-tuple : H(x) 1-tuple 5-tuple : H(x) 1-tuple 5-tuple : H(x) 1-tuple 5-tuple : H(x) 1-tuple
0 (0, 0, 0, 0, 1) : 5.87 1 (1, 0, 0, 0, 1) : 5.37 1 (0, 2, 1, 3, 1) : 4.41 2 (2, 2, 2, 4, 1) : 4.81 1 (0, 0, 1, 1, 1) : 4.92 2
1 (0, 2, 1, 1, 0) : 6.35 1 (1, 2, 2, 3, 0) : 5.24 0 (0, 1, 0, 3, 1) : 4.44 2 (1, 1, 1, 3, 1) : 5.42 1 (1, 1, 1, 3, 0) : 4.68 1
2 (1, 0, 1, 0, 0) : 5.27 1 (0, 0, 2, 3, 1) : 5.25 1 (2, 0, 0, 4, 0) : 4.25 2 (0, 2, 0, 5, 0) : 5.32 1 (0, 2, 1, 1, 0) : 5.11 1
3 (1, 2, 2, 1, 0) : 5.99 0 (0, 1, 0, 0, 0) : 5.09 0 (2, 2, 1, 5, 1) : 4.21 2 (2, 1, 2, 0, 1) : 5.46 2 (0, 2, 0, 3, 1) : 4.32 0
4 (0, 2, 2, 3, 1) : 6.06 1 (0, 1, 2, 0, 1) : 4.98 1 (1, 1, 1, 3, 1) : 4.28 1 (1, 2, 2, 0, 1) : 5.28 1 (0, 2, 2, 3, 1) : 4.90 1
5 (1, 1, 2, 3, 1) : 6.05 0 (0, 2, 2, 0, 1) : 4.68 1 (1, 1, 1, 4, 0) : 3.73 1 (0, 1, 1, 0, 0) : 5.69 1 (1, 2, 1, 0, 0) : 5.57 2
6 (1, 0, 0, 3, 1) : 5.97 1 (1, 0, 0, 1, 0) : 5.21 1 (2, 0, 0, 1, 1) : 4.61 0 (1, 0, 1, 1, 0) : 5.27 0 (2, 2, 0, 3, 1) : 5.05 1
7 (0, 0, 1, 3, 1) : 6.28 1 (0, 2, 0, 3, 1) : 4.73 1 (1, 0, 0, 3, 1) : 4.18 2 (0, 0, 2, 3, 1) : 5.72 1 (0, 1, 2, 5, 1) : 4.70 0
8 (1, 0, 0, 0, 1) : 6.07 0 (0, 0, 2, 0, 1) : 4.63 1 (1, 0, 2, 3, 1) : 4.32 1 (1, 0, 0, 4, 1) : 5.70 1 (0, 0, 0, 3, 1) : 5.03 2
9 (0, 0, 1, 3, 1) : 6.11 1 (2, 0, 1, 3, 0) : 4.97 2 (0, 0, 2, 3, 1) : 4.93 1 (0, 2, 0, 4, 1) : 5.76 1 (0, 1, 2, 3, 1) : 5.08 2

10 (0, 0, 1, 0, 0) : 5.77 0 (2, 0, 1, 3, 0) : 4.88 2 (0, 1, 2, 4, 1) : 4.20 1 (1, 2, 0, 1, 0) : 5.19 1 (0, 0, 2, 1, 1) : 4.23 2
11 (0, 1, 1, 5, 0) : 6.20 0 (1, 2, 0, 0, 1) : 5.33 1 (2, 2, 0, 3, 0) : 4.68 1 (2, 0, 2, 0, 1) : 5.51 1 (1, 1, 2, 3, 1) : 5.09 0
12 (1, 1, 2, 3, 1) : 6.24 1 (0, 1, 1, 3, 1) : 5.02 1 (0, 1, 1, 0, 1) : 4.51 2 (1, 0, 2, 3, 1) : 5.50 1 (2, 2, 0, 3, 1) : 5.07 1
13 (0, 2, 2, 3, 1) : 5.82 1 (1, 0, 1, 3, 0) : 4.59 1 (1, 0, 2, 0, 0) : 4.11 1 (0, 2, 0, 4, 0) : 5.65 1 (0, 0, 1, 5, 0) : 5.25 2
14 (0, 0, 0, 3, 0) : 6.10 1 (1, 1, 2, 0, 1) : 4.41 0 (1, 0, 0, 5, 1) : 3.81 1 (0, 1, 0, 3, 1) : 5.19 2 (0, 1, 0, 0, 1) : 5.24 2
15 (1, 1, 1, 1, 1) : 5.95 2 (2, 0, 0, 0, 1) : 5.15 0 (1, 1, 1, 4, 0) : 4.46 2 (1, 2, 0, 4, 1) : 5.27 1 (0, 2, 0, 3, 1) : 4.92 2
16 (1, 2, 1, 0, 1) : 5.42 1 (0, 2, 1, 3, 1) : 5.15 1 (2, 2, 0, 0, 0) : 4.42 1 (1, 1, 0, 4, 1) : 5.49 0 (0, 1, 1, 0, 1) : 5.46 1
17 (1, 2, 0, 0, 1) : 5.86 0 (1, 1, 2, 1, 0) : 4.09 2 (1, 1, 0, 1, 0) : 3.83 1 (0, 1, 1, 3, 1) : 5.14 0 (1, 1, 1, 3, 1) : 5.51 2
18 (0, 2, 0, 3, 1) : 5.81 1 (0, 0, 0, 5, 0) : 4.61 2 (1, 1, 1, 5, 0) : 4.21 2 (2, 1, 1, 1, 0) : 5.49 0 (2, 0, 0, 5, 0) : 4.98 1
19 (1, 2, 0, 3, 1) : 6.20 0 (1, 2, 2, 1, 1) : 4.82 1 (2, 2, 2, 3, 0) : 4.09 1 (2, 0, 2, 3, 0) : 5.33 2 (1, 1, 1, 3, 1) : 5.23 1

long-term effects of actions and require precision in decision-making. Thus the increased budget not only
allows for RHEA to find better plans, but also allows the tuners to increase their accuracy in recommending
good parameters.

(a) MAB (b) NTBEA (c) MAB (d) NMC

Figure 6.11: Normalised count of times considered best, per parameter value, one game per row. Parameter
value index corresponds to list from Table 6.2. All use 5-10-1000 RHEA configuration.

Most interestingly, we remark first win rates from some agents in very difficult games where SotA
remains at 0%: RND-10-15-1000 wins one game of “Dig Dug”, and NMC, NTBEA and RND (with RHEA
configuration 10-15-5000) win 2 games of “Roguelike” each. More in-depth analysis is needed to find out
how to further boost performance in these games, but we consider these clear examples of the benefits of
online adaptability for tackling very difficult problems. A similar result was previously seen in (32).

We see no large differences in overall performance for the tuners, although they do appear to have differ-
ent strengths. The RND tuner achieves the most better-than-SotA results across all RHEA configurations (3
games for both 10-15-1000 and 10-15-5000), and performs worse in least games as well (13 games for both
5-10-5000 and 10-15-5000). However, NTBEA obtains the highest difference to SotA in winning games
(8%), as well as the lowest difference in losing games (6.27%).
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(a) MAB in “Wait for Breakfast”. (b) NTBEA in “Wait for Breakfast”.

(c) MAB in “Crossfire”. (d) NMC in “Crossfire”.

Figure 6.12: Average parameter values in winning game instances. All use 5-10-1000 RHEA configuration.

Parameter Combinations Analysis (5-tuples)

These experiments can also give further insight into what works, and what does not, in the algorithm being
tuned. Table 6.4 shows the parameter combination chosen most often as the best option by each of the
tuners, in all games, for RHEA configuration 5-10-1000. We further note the Shannon entropyH(x) over all
game ticks, which gives an indication of the tuner’s consistency. Using this measure, the NMC tuner seems
most consistent in its recommendations, while the EA tuner the least; given their win rates (Table 6.3),
this could suggest consistency might not be essential to success (e.g. if consistently recommending bad
parameter combinations), although there is no strong evidence in this direction.

No tuner seems to agree with others on the best parameter combination for any game; this is likely due to
the low number of data points each tuner is able to sample during a game, which do not allow for significant
statistics. However, some partial agreements can be observed, which could indicate good combinations of
parameters. In particular, we can observe a preference in several games and tuners for the (3, 1) 2-tuple
(mutation type, mutation transducer), corresponding to values (Softmax, true). There is not a similar case
for the crossover parameters (selection type, crossover type), where a wide variety of values are chosen in
the best 5-tuples.

Individual Parameter Analysis (1-tuples)

Lastly, we can analyse each parameter individually and the values each tuner considers best. In Table 6.4,
we also highlight the value chosen as the best option for the genetic operator parameter. We can observe
more agreement between the different tuners on individual values of parameters, with 12 games showing 3
or more tuners choosing the same value for the genetic operator (mutation only, with two exceptions). In
“Chopper”, they all show a preference for using both crossover and mutation. This game generally benefits
from ample exploration of the action space, which is best obtained with both genetic operators enabled.
Whereas in “Seaquest”, crossover only is considered best, leading to smaller disturbances, which could be
key in a stochastic game with many possible deaths to the agent - a point strengthened by the increase in
performance of several tuned agents in this game.

This is similar for most other parameters, with rank selection, 1-bit mutation and mutation transducer
enabled being chosen most often; there is no agreement on which crossover type works best in any of
the games. All tuners show similar and fairly high levels of consistency (given by Shannon entropy) and

113



variance in their recommendations.
Figure 6.11 shows that, interestingly, both MAB and NTBEA consider option 3 (Softmax) the worst

value for mutation in many games, which we previously saw chosen most often in 5-tuples. Although
this could be a question of credit assignment, as parameters receive associated values even if they do not
impact the phenotype, we consider this an important highlight of the combinatorial problem, as opposed to
choosing the best 1-tuple values. In contrast, MAB and NMC do not feature a similar ranking of options
for the genetic operator, although they do both favour option 1 (mutation only) in most games.

In Figure 6.12 we take a look one level deeper into parameter choices per game tick, and how the scores
given to each parameter value progresses over the course of a game. The examples included highlight the
different approaches of the tuners, with shapes similar across all other parameters for the same tuners as
well. MAB seems to always start with over-estimations before settling on lower scores, whereas NTBEA
and NMC both show upwards trends and are able to make better use of information from previous game
ticks to continue improving their parameter recommendations.

6.3 Conclusions
In this chapter we used several optimisation algorithms to automatically search the large parameter space
of RHEA in order to find the most high-performing variant for a variety of environments. We extract infor-
mation from the data logged by the optimisation algorithms in order to better analyse RHEA’s parameters,
leading to interesting insights into which parameter values are effective on which types of environments, in
order to better inform future specific applications of the algorithm.

Offline. First, the N-Tuple Bandit Evolutionary Algorithm (NTBEA) was used to optimise the perfor-
mance of Rolling Horizon Evolutionary Algorithm (RHEA) in 20 GVGAI games, by modifying the con-
figuration of RHEA’s 18 parameters, offline, ran for longer periods of time. The various values possible for
all parameters form a large search space of 5.36 × 108, which makes manual optimisation or exhaustive
search difficult with limited compute, thus we choose to use NTBEA to attempt to improve the win rate of
the agent in each of the 20 games.

As a result of the optimisation, the performance increases in several games. However, puzzles appeared
to be the games where NTBEA struggled to estimate the quality of different agent configurations and the
solution returned was worse than the state-of-the-art, although NTBEA’s evolutionary process was run with
SotA as the initial solution. The optimisation process differed in the games tested, NTBEA being able to
converge in under 100 iterations in some games, while taking most of its 1500 iteration budget to find good
solutions in others: this strengthens the idea that one specific method is unlikely to perform well across
all games, and that games might require specialised parameter search spaces to ensure fast optimisation or
even the possibility of a high-performing solution being found.

We further analysed RHEA’s parameters through the evolutionary process, by looking at some 1-tuples
and 2-tuples and the values explored for each. Several games with similar features in common were found to
prefer similar parameter values, although exceptions do exist of game clusters shown in parameter values,
but not in the traditional game features considered. This suggests that game clustering methods can be
further enhanced by considering agent-based features.

To further expand on the work carried out here, we propose exploring larger and more complex search
spaces, with an enhanced NTBEA which is able to handle tree structures: we have seen several parameters
dependent on others and optimisation would be more sample-efficient if this was taken into account during
the evolutionary process. NTBEA parameters can be better adjusted as well: decreasing the exploration
constant over time could lead to better results. More enhancements can also be added into the system, as
well as optimising RHEA on a larger set of games (including multi-player games and games with hidden in-
formation), with the possibility of testing approaches at optimising a generally applicable player. Moreover,
other optimisers could be tested, such as Bayesian Optimisation, or other parameter selection approaches,
such as (165), to observe difference in results and insights gained. Lastly, information gathered during opti-
misation and in-depth analysis can be used for designing hyper-parameter methods which would be able to
identify game features, relate these to previously seen situations and adapt to new unknown environments.

Online. Second, we presented the use of various optimisation methods in choosing parameters for the
Rolling Horizon Evolutionary Algorithm (RHEA) online (i.e. during one play-through of a game, in real-
time). Five different tuners were used in this context, a standard Genetic Algorithm (GA), a Multi-Armed
Bandit (MAB), Naive Monte Carlo (NMC), the N-Tuple Bandit Evolutionary Algorithm (NTBEA) and
Random (RND). Several budget options, population sizes and individual length were used for RHEA. The
tuned agents were tested in 20 games from the General Video Game AI framework and win rate, as well as
parameter combinations and individual parameter choices were analysed in detail.
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Victory rates of tuned agents were comparable to the high bar set by the RHEA state-of-the-art, surpass-
ing it in several games. We highlight that this approach is more general and highly adaptive, as opposed
to hand-picked SotA results. Generally, longer RHEA rollouts and higher budgets led to better outcomes,
although the opposite led to specific improvements in the game “Crossfire”. Tuner performance was very
similar, with RND and NTBEA standing out in a few cases; a deeper analysis into the different strengths
and weaknesses of the tuners, and better initialisation methods, is one avenue for future work; further, could
the tuner itself be tuned, or, the choice of tuner included as a parameter, for a branching hyper-parameter
optimisation algorithm?

There did not appear to be a particular combination of parameters, which worked best in all games,
or even the same recommendation by all tuners in a game. This emphasises the difficulty of this highly
stochastic problem. However, some combinations of parameters did stand out as better than others, such
as Softmax mutation, used with a mutation transducer. 1-tuple analysis suggested 1-bit mutation to be the
best instead when dependencies are ignored, using mutation only as the genetic operator and keeping the
mutation transducer enabled.

We also observed interesting behaviour and novel results in very difficult problems such as “Dig Dug”
and “Rogue”; obtaining more data points where agents win these games could give important information
on strategies for tackling such problems. Similarly, we saw a difference in highly dynamic games when
discounting the tuner statistics between game ticks, which is worth further investigation and could boost
performance in this class of problems.

Next chapter. In the next chapter, we take forward the insights gained through in-depth analysis from the
previous two chapters and show applications of RHEA, with minimal modifications and adaptations, in 3
different environments. All of the environments are much more complex than the simple GVGAI games
tested so far, posing additional challenges such as multi-player scenarios, high strategy requirements or a
completely novel type of environments, tabletop games.
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Chapter 7

Applications

So far we have looked at using the General Video Game AI framework to develop and study the Rolling
Horizon Evolutionary Algorithm, together with several improvements and combinations with other tech-
niques. These studies have shown RHEA to be a new state-of-the-art in general video game-playing meth-
ods. However, the games it has been tested on so far, although diverse in their features and skills required
from players, remain fairly small arcade-style games, which might cause doubt in the applicability of this
method in real-world problems or more complex environments.

This chapter aims to address this concern by discussing several works applying the algorithm in spe-
cific domains. All of the chosen domains detailed in this chapter (Pommerman in Section 7.1, Tribes in
Section 7.2 and Tabletop Games in Section 7.3) have several features in common, all of which make them
much more complex domains than previously explored: they are multi-player partially-observable environ-
ments, with large and dynamic action spaces (reaching hundreds of actions possible in a single game state).
All domains further include specific other important challenges of interest to the game-playing AI research
community.

See Table 7.1 for a summary of the features of the games discussed here mapping to the previously
presented Table 2.1.

We use the knowledge gained from previous studies and analysis to choose favourable configurations
for each domain, for a “plug in and play” approach. Each domain does add a custom heuristic and/or reward
function which all the AI algorithms tested use. This is the only domain-specific adaptation employed in
RHEA. We show that this general algorithm is able to handle more complex environments well, showing
performance competitive with other players, both artificial and human.

This chapter includes projects I have contributed to, but where I was not the primary author.

Table 7.1: Games including a mapping to relevant features in Table 2.1. Opp refers to the opponent. Solo
refers to the player being the only one left in the game. Most Play card action spaces are abstracted, and
often involve further decisions to be made, or different phases. Counter win conditions involve having
the highest amount of a specific game component. Line refers to completing a grid line (row, column
or diagonal) with the player’s symbol. Other concepts (e.g. Death) are also abstracted and the reader
is recommended to read the full game description. Games with ‘x‘ in the stochasticity column have a
stochastic setup and randomness affects gameplay after the game has started as well. Games with ‘*‘ in the
stochasticity column only have a stochastic setup, but are deterministic thereafter.

Idx Game Stoch. #Players Win Lose Board Actions
0 Pommerman * 4 Solo Death M/Dense Move+Bomb
1 Tribes x 2-4 Kill Death L/Dense Dynamic
2 Tic-Tac-Toe 2 Line Opp-Line S/Sparse Choose grid cell
3 Dots & Boxes 2-5 Counter Opp-Count M/Dense Choose grid edge
4 Love Letter * 2-4 Counter/Solo Death/Opp-Counter - Play card
5 Uno * 2-10 Counter Opp-Counter - Play card
6 Virus! * 2-6 Counter Opp-Counter - Play card
7 Exploding Kittens x 2-5 Solo Death - Play card
8 Colt Express x 2-6 Counter Opp-Counter S/Dense Play card
9 Pandemic x 2-4 Counter Timeout L/Sparse Dynamic
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7.1 RHEA in Pommerman

The work in this section was published at AIIDE 2019:
D. Perez-Liebana, R. D. Gaina, O. Drageset, E. Ilhan, M. Balla, and S. M. Lucas, “Analysis of Statistical
Forward Planning Methods in Pommerman,” in Proceedings of the Artificial intelligence and Interactive

Digital Entertainment (AIIDE), vol. 15, no. 1, 2019, pp. 66–72.

Figure 7.1: Original “Pommerman” (left) and Java version (right).

The first environment tested in this chapter is “Pommerman” (see Figure 7.1 for a visualisation). “Pom-
merman” is an environment originally developed in Python1 which implements the mechanics of the game
“Bomberman” (Hudson Soft, 1983) in a partially-observable setting. As such, four players each start in a
corner of a randomly generated 2D 11 × 11 grid map containing permanent obstacles (walls), temporary
obstacles (wooden boxes) and power-ups. The players can each move orthogonally (up, down, left, right),
do nothing, or use a special action to place a bomb that will explode in a cross of a particular range (initially
1 square up, down, left and right) after 10 game ticks. Such bomb explosions can destroy the temporary
obstacles, which may reveal one of the available power-ups: increase in bomb explosion range, increase in
the number of bombs the player can place (once a bomb explodes, it goes back into the player’s inventory
and can be placed again; players can only place 1 bomb at the beginning of the game), or gain the ability
to kick bombs. Kicking bombs (by moving against them) causes bombs to move with constant velocity (1
square/tick) in the direction opposite to the kicker, until they encounter an obstacle, the edge of the play
area, or another player. Bomb explosions can also destroy these power-ups, and kill players. This last game
mechanic leads to the goal of the game: in order to win, a player has to avoid bomb explosions and be the
last one alive at the end.

Several different game modes exist which offer some small variety in the games being played. The
first variation was introduced as a means to force a winner in games where the players play too safely and
simply avoid dying (which means the game ends in a tie). To avoid such scenarios, a possible toggle to the
environment is to add shrinking level space: after game tick 800, the outer edge of the remaining playable
space turns into permanent obstacles every 10 game ticks, resulting in a slow reduction of the available play
area and forcing players into much closer proximity. Any players on the edge when the level shrinks is
automatically killed and loses the game. This method forces more aggression between players and rewards
those who are still able to avoid flames in a much tighter play area.

Additionally, the original “Pommerman” competition distinguishes two different tracks that can both
make use of this environmental toggle: free for all (FFA) and team (TEAM). A third track was tried at the
2019 competition (team radio, similar to the TEAM game mode, but allowing messages to be sent between
team members) - however, this was not tested in our study and therefore will not be further elaborated on
here. The FFA game mode has each player competing individually against 3 other players, and the last
player alive is declared the winner; alternatively, the players alive at the end tie, and those that died lose.
The TEAM game mode has players competing in teams of 2, so that both players in a team win at the end
of the game if at least one member of their team survives, and both lose otherwise. If at least one member
from both teams is alive at the end, all players tie.

Although the overall game rules are fairly simple, this environment has several emergent complexities:

1https://www.pommerman.com/
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• Multi-player: As opposed to all games tested so far, there are 4 players acting simultaneously in
“Pommerman”. It follows that, although the environment itself is deterministic after the initial pro-
cedural generation, each play-through (and therefore each simulation performed by our statistical
forward planning methods) is very noisy, depending on the behaviour of the other players. Thus
opponent modelling and high adaptability to rapidly changing environments are two important chal-
lenges to overcome.

• Partial observability: The game can be played with full observability (therefore the agents observe
the entirety of the game board at all times), or with partial observability (where vision is restricted
to a square of a particular range around the player, and all other unknown parts of the board are
returned as “hidden” objects in agent observations). This encourages flexible action plans that can be
adapted to react to unknown situations, as well as opening a potential research area into memory and
belief systems, to recognise e.g. that permanent obstacles are not going to move, thus any internal
simulations could fill in this information as previously observed.

• Delayed actions: As detailed earlier, bombs take several game ticks to explode. For simulation-based
agents, this means that the result of a “place bomb” action will not be observed until several ticks in
the future, by which point it may be too late for the agent to actually react appropriately. This can be
especially troublesome when trap scenarios emerge, and the agent is stuck within several obstacles
with no way to escape an incoming explosion (possibly even caused by their own bomb). Longer
planning horizons could aid in this issue, but given the limited thinking time (40ms available per
tick) and previous observations in the study of statistical forward planning methods, short horizons
allowing for more iterations are needed in highly dynamic environments such as “Pommerman”.

• Cooperation and competition: Lastly, the TEAM game mode specifically adds another complexity:
the agents must not only learn how to kill other players and avoid dying themselves, but they must also
work together with their teammate and help each other as needed in order to maximise their chances
of winning. In the lack of communication, action coordination and using actions to communicate
intent are the key for success, and another interesting area for further research and analysis.

Taking all of this into account, we consider this environment a very interesting testbed for AI, and
very different to GVGAI games explored so far, providing interesting research directions into opponent
modelling, communication and game theory. As such, we experiment with RHEA and MCTS against two
simpler approaches: greedy action selection, and a rule-based system. The contributions brought by this
study are not only about showing first applications of Statistical Forward Planning methods in “Pommer-
man” and reporting their performance, but also a deeper analysis into the games played and the behaviour
of each of the methods included, which can lead to important insights and hints as to how to improve the
algorithms further. Overall, MCTS and RHEA are shown to outperform the simpler approaches, although
MCTS appears to be the best in several game settings. We further discuss in this section some related work,
the experimental setup, results, conclusions and interesting avenues for future work.

7.1.1 Related work
The first “Pommerman” competition was organised in 2018 and focused on the FFA game mode, in which
4 agents play individually against each other. This competition saw a Finite State Machine Tree Search
approach come in first, with a rule-based AI in second (166). The second competition organised received
more entries, including both planning and learning approaches. Organised as part of NeurIPS 2018, this
competition focused on the TEAM mode instead, in which 2 teams of 2 agents play in a partially observable
environment (166). In (167), the authors describe their 2 MCTS-based agents which ranked first and third,
and compare them against the 2nd place agent (another MCTS implementation with a depth D = 2).
Osogami fixes random seeds on the first level of the tree and perform deterministic rollouts with D = 10.

Zhou et al. (168) compared different search techniques, such as MCTS, BFS and Flat Monte Carlo
search in this game. The authors show, in the fully observable mode, that MCTS is able to beat simpler and
hand-crafted solutions. The results reported in our study align with these findings, but we expand the work
to partially observable settings, add RHEA to the pool of agents tested, and report a more detailed analysis
on how the agents played the games.

An important body of literature on “Pommerman” is on the challenge of learning to play offline. Peng et
al. (169) used continual learning to train a population of advantage-actor-critic (A2C) agents in “Pommer-
man”, beating all other learning agents in the 2018 Competition. A Deep Neural Network (DNN) is updated
using A2C in a process that allows the agent to progressively learn new skills, such as picking items and hid-
ing from bomb explosions. Another Deep Learning approach is proposed by (170), which uses Relevance
Graphs obtained by a self-attention mechanism. This agent, enhanced with a message generation system,
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analyses the relevance of other agents and items observed in the environment. The authors show that their
Multi-Agent network outperforms all other tested agents. Resnick et al. (171) proposed Backplay, which
speeds up training by starting on the terminal states of an episode. By backtracking towards the initial state,
the agent improves on sample-efficiency and can learn faster using curriculum learning. (172) implemented
Skynet, second-best learning agent in the NeurIPS 2018 Team Competition. Each agent of this team is a
neural network trained with Proximal Policy Optimisation, reward shaping, curriculum learning and action
pruning.

Finally, some relevant work on hybrid methods combines Deep Learning with MCTS. In (173), also later
expanded in (174), the authors train a DNN using Asynchronous Advantage Actor-Critic (A3C) enhanced
with temporal distance to goal states. They also integrate MCTS as a demonstrator for A3C, which helps
reduce agent suicides during training via Imitation Learning. It is interesting to observe here that these
findings align with the lower suicide rate shown by MCTS in the experiments performed for this paper (see
Section 7.1.5).

7.1.2 Framework

The experiments described use our own Java implementation of the game2, as opposed to the original Python
Pommerman framework3. See both games depicted in Figure 7.1. Our Java implementation follows closely
all of the game rules, observations, game modes and level generation, in order to allow for fair comparison
with agents tested in the Python framework previously. However, our implementation is 45 times faster
than the original, running at 241.4k ticks a second, compared to the original at 5.3k ticks a second4. This
aspect is key for SFP methods, which can show better performance if able to run more simulations within
the same real-time thinking budget ( 40ms). The re-implementation of the game further allows us to easily
build more variations and logging systems on top of the original, and we use this for a better analysis of the
results shown later on.

The game begins by generating a board, using a given random seed (therefore the same board can be
used for multiple game runs as long as the seed is known). This process first places the agents in the corners
of the board at distance A = 2 from the edge of the board, and E = 2 empty tiles around them to ensure
some degree of freedom of movement in the beginning of the game. Next, obstacles are placed semi-
randomly on the map (ensuring at all times that there exists a path of empty tiles connecting all 4 players),
symmetrically distributed along the main diagonal, having X = 20 temporary obstacles and Y = 20
permanent obstacles. The algorithm then checks the number of inaccessible tiles on the map - if this is
bigger than Z = 4, the whole process repeats. W = 10 power-ups are placed under randomly selected
temporary obstacles (1 item per obstacle), with types also chosen at random. The board is then complete,
with all stochastic selections made uniformly at random. A,E,X, Y, Z and W are parameters in our level
generator, but the experiments presented use the default values from the original framework, as depicted
here.

With the board game ready, the game environment becomes deterministic for the duration of the agents’
play. The game loop iterates until the end condition for the selected game mode is met (1 agent alive for
FFA, or 1 team alive for TEAM). In each iteration, all agents are asked for an action to execute, given their
observation of the current game board, their avatar’s properties (bomb range, number of bombs carried and
ability to kick) and the alive status of the other players in the game. This observation may be restricted
by the vision range (VR); a VR of n indicates that a square with size of n ∗ 2 + 1 board tiles is visible to
the agent, centred around the agent position; everything outside of this range is replaced with Fog tiles and
treated as empty tiles in agent simulations. With this information, agents have 40ms to decide which of the
6 actions available to do: STOP (does nothing), move in one of four directions (UP, DOWN, LEFT, RIGHT)
and BOMB (place a bomb, if possible, in the current position). The actions of all agents are then executed,
respecting rules of simultaneous decision-making (e.g. no position swapping of avatars).

Besides the game state observation, the agents further receive a forward model. Even though the en-
vironment itself is deterministic, there is information hidden from players (e.g. where the power-ups were
placed and which they are), which is randomised into a deterministic observation before this is passed
on to the players. However, the main challenge comes from deciding what the other players might do in
the situation (opponent modelling), which is unknown, and often stochastic (depending on the algorithms
controlling the opponents).

2https://github.com/GAIGResearch/java-pommerman
3https://www.pommerman.com/
4Timings recorded on a machine using Windows 10 Intel Core i7 16GB RAM.
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7.1.3 Agents

We describe next the 2 simple agents included in the experiments (1SLA and Rule-Based), and the heuristic
function used to evaluate states by 1SLA, RHEA and MCTS. All agents using the FM for game simulations
employ a random opponent model (i.e. they assume the opponents will always return a random move out
of the 6 available).

One Step Look Ahead (1SLA): This greedy algorithm exhaustively tries each of the actions available
in game simulations, using the FM to advance the game state once with each action. Each of the resulting
states are evaluated with the heuristic function, and the action which led to the highest valued state is chosen
to be played in the game. Ties are broken uniformly at random.

Rule-Based: This agent is a re-implementation of the Simple Agent in the original “Pommerman” frame-
work5. This agent uses Dijkstra’s algorithm (with depth limited to 10 so as to avoid over-timing) to calculate
distances to different game objects in the board observation received. It then follows several simple steps
to decide on the next best action to execute, in the specified order of priority:

1. Escape: If there are upcoming bomb explosions, choose the move action which leads the agent away
from the explosions.

2. Attack: If adjacent to an enemy, place a bomb.

3. Move to attack: If there is an enemy within 3 steps, choose the move action which allows the agent
to get closer to the enemy.

4. Power up: If there is a power-up within 2 steps, choose the move action which allows the agent to
get closer to the power-up.

5. Destroy: If adjacent to a wooden box, place a bomb.

6. Move to destroy: If there is a wooden box tile within 2 steps and a bomb could be placed next to it,
choose the move action which allows the agent to get closer the wooden box.

7. Explore: Lastly, choose a random move action towards a board position which has not been recently
visited.

Custom State Heuristic: 1SLA, MCTS and RHEA use the same heuristic to evaluate a state. It is
calculated as the difference between the root game state (observation received from the environment at the
beginning of its decision-making process) and the evaluated game state (obtained through FM simulations),
and is based on a series of features:

1. ∆t: number of teammates who died during simulations — weight wt = −0.1 (0 for FFA)

2. ∆e: number of enemies who died during simulations — weight we = 0.13 (0.17 for FFA)

3. ∆w: number of wooden blocks that were destroyed during simulations — weight ww = 0.1

4. ∆b: increase in bomb range during simulations — weight wb = 0.15

5. k ∈ {0, 1}: ability to kick bombs (0 = can kick, 1 = can not kick) — weight wk = 0.15

,
The state value is the weighted-sum

∑
i ∆i × wi. The weights were manually chosen by observing

agent performance prior to the experiments.

5https://github.com/MultiAgentLearning/playground/blob/master/pommerman/agents/simple_
agent.py
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Table 7.2: Experimental Setup. All ≡ VR ∈ {1, 2, 4,∞}. Each set up is repeated 200 times (10× 20 fixed
levels). There are 32 different configurations, totalling 6400 games played.

Game mode: FFA
VR Agents

∞

RHEA vs 1SLA vs 1SLA vs 1SLA
RHEA vs Rule-Based vs Rule-Based vs Rule-Based

MCTS vs 1SLA vs 1SLA vs 1SLA
MCTS vs Rule-Based vs Rule-Based vs Rule-Based

All
1SLA vs Rule-Based vs RHEA vs MCTS

RHEA vs MCTS vs RHEA vs MCTS
Game mode: TEAM

VR Agents

All

RHEA × 2 vs 1SLA × 2
RHEA × 2 vs Rule-Based × 2

MCTS × 2 vs 1SLA × 2
MCTS × 2 vs Rule-Based × 2

RHEA × 2 vs MCTS × 2

7.1.4 Experimental Setup

We define a level as a game with a fixed board. We generated 20 fixed levels with 20 different random
seeds, sampled uniformly at random within the range [0, 100000]. All experiments described in the rest of
this section play each of these 20 levels 10 times, hence 200 plays per configuration. We test 2 different
game modes, Free For All (FFA) and TEAM, in 4 different observability settings: vision ranges VR ∈ {1,
2, 4}, or fully observable (denoted here as∞).

1SLA, Rule-Based, RHEA and MCTS were used in the tests. No communication is allowed between
agents. For RHEA and MCTS, their rollout depths (L and D) are set to 12 moves. RHEA and MCTS use
a budget of 200 iterations per game tick to compute actions, with a uniform random opponent model and
the same custom state heuristic (described in the previous section) for evaluating states found at the end of
action sequences. MCTS uses K =

√
2 and RHEA evolves a single individual (N = 1). New individuals

are created every iteration via mutation (rate 0.5), keeping the best individual and a shift buffer is used.
Given that “Pommerman” is a 4-player game, the number of combinations of agents and modes is

prohibitively high, thus we made a selection of the most interesting settings for our tests. Table 7.2 shows
all configurations tested. For each game mode, first we aim to confirm our initial hypothesis that RHEA
and MCTS have a higher performance than the other two simpler methods. Afterwards, we try to determine
which of these two algorithms achieves better results in direct confrontation. In order to account for possible
biases due to symmetry along the main diagonal, we tested RHEA versus MCTS (VR = {1, 2, 4,∞}) with
swapped positions. These tests showed that there is no relevant difference on the performance of the teams
after the position exchange, thus swapped experiments were excluded from this report. All experiments
were run on IBM System X iDataPlex dx360 M3 server nodes, each with an Intel Xeon E5645 processor
and a maximum of 2GB of RAM of JVM Heap Memory.

7.1.5 Results

Overall, the results indicate that RHEA and MCTS both outperform the simpler methods tested, 1SLA and
Rule-Based. This section presents and discusses results in the two game modes tested, FFA and TEAM6.

FFA

In FFA games with full observability (first section of Table 7.3), it is interesting to observe that, while the
difference in win rate against the Rule-Based AI is quite small (rows 1 and 3) at 46.5% for MCTS and
33.0% for RHEA, MCTS tends to end more of its non-winning games in ties rather than losses, as opposed
to RHEA. This suggests RHEA to adopt more aggressive or risky strategies, whereas MCTS plays safer and
often avoids dying until the end of the game. This is corroborated by the average number of bombs these
agents lay (RHEA uses about 30 more per game, see Fig. 7.2).

6Full data and plots are available here: https://github.com/GAIGResearch/java-pommerman/tree/master/
data/
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Table 7.3: FFA win rate (W), ties (T) and losses (L). 1st column indicates vision range ∈ {1, 2, 4,∞}.
Names in italics represent results averaged across players of the same type.

VR Agents % Wins % Ties % Losses

∞ MCTS 46.50 (4.0) 42.00 (3.0) 11.50 (2.0)
Rule-
Based

3.00 (1.0) 16.50 (3.0) 80.50 (3.0)

∞ MCTS 91.50 (2.0) 5.00 (2.0) 3.50 (1.0)
1SLA 1.00 (0.3) 2.00 (1.0) 97.00 (1.0)

∞ RHEA 33.00 (3.0) 22.00 (3.0) 45.00 (4.0)
Rule-
Based

12.50 (2.3) 12.67 (2.3) 74.83 (3.0)

∞ RHEA 65.50 (3.0) 1.00 (1.0) 33.50 (3.0)
1SLA 11.17 (2.3) 0.33 (0.0) 88.50 (2.3)

1

RHEA 20.50 (3.0) 5.00 (2.0) 74.50 (3.0)
1SLA 2.50 (1.0) 0.50 (0.0) 97.00 (1.0)
MCTS 67.50 (3.0) 7.50 (2.0) 25.00 (3.0)
Rule-
Based 1.50 (1.0) 3.00 (1.0) 95.50 (1.0)

2

RHEA 21.00 (3.0) 43.00 (4.0) 36.00 (3.0)
1SLA 0.00 (0.0) 3.50 (1.0) 96.50 (1.0)
MCTS 18.00 (3.0) 54.00 (4.0) 28.00 (3.0)
Rule-
Based 4.50 (1.0) 23.00 (3.0) 72.50 (3.0)

4

RHEA 19.00 (3.0) 57.00 (4.0) 24.00 (3.0)
1SLA 0.00 (0.0) 2.00 (1.0) 98.00 (1.0)
MCTS 16.50 (3.0) 59.00 (3.0) 24.50 (3.0)
Rule-
Based 3.00 (1.0) 17.00 (3.0) 80.00 (3.0)

∞

RHEA 13.00 (2.0) 51.50 (4.0) 35.50 (3.0)
1SLA 0.00 (0.0) 3.50 (1.0) 96.50 (1.0)
MCTS 21.00 (3.0) 61.50 (3.0) 17.50 (3.0)
Rule-
Based 1.50 (1.0) 32.00 (3.0) 66.50 (3.0)

1 RHEA 8.50 (2.0) 6.00 (2.0) 85.50 (2.5)
MCTS 19.50 (3.0) 40.50 (3.0) 40.00 (3.5)

2 RHEA 8.00 (2.0) 38.50 (3.5) 53.50 (3.5)
MCTS 5.50 (1.5) 56.50 (3.5) 38.00 (3.0)

4 RHEA 1.25 (1.0) 67.00 (3.0) 31.75 (3.0)
MCTS 2.00 (0.5) 74.25 (3.0) 23.75 (3.0)

∞ RHEA 1.75 (0.5) 73.25 (3.0) 25.00 (3.0)
MCTS 1.00 (0.5) 83.75 (2.5) 15.25 (2.5)

It is also worth taking into account the fact that the number of deaths by suicide in RHEA is higher
than MCTS, as shown in Figure 7.2 (left). We refer to suicides to those cases in which an agent is killed
by its own bomb. Note that in some cases this also includes chain reactions from other bombs. Suicides in
“Pommerman” are seen as one of its most challenging aspects (174). In general, MCTS achieves the lowest
suicide rate in all VR settings and modes, which helps explain the success of this method.

The win rate percentage for both RHEA and MCTS increase when facing 1SLA, with very few ties in
both cases. The low number of ties compared to deaths in non-winning games suggests more aggressive-
ness, although 1SLA is hindered by its short look-ahead in trying to avoid bomb explosions and suicides, as
its horizon does not reach beyond the 10 game ticks bombs take to explode. MCTS clearly dominates 1SLA
with a 91.5% win rate. When all 4 methods play against each other (second section of Table 7.3), win rate
heavily shifts in favour of MCTS with very short VR (1). In all VR options, 1SLA and Rule-Based keep a
win rate no higher than 5%. RHEA’s performance is similar for all VR values, 10% and 21% of winning.
It is interesting to observe that the number of losses is higher with low visibility (74.50%, V R = 1) than in
the other cases, where ties happen more often.

Finally, MCTS achieves a higher win rate when playing only RHEA in the shorter VR option (1; see

123



Table 7.4: TEAM win rate (W), ties (T) and losses (L). 1st column indicates vision range (VR). Results
include 2 agents of the same type on a team and average across them. The row agent team plays against the
column opponent team.

VR Agents % Wins % Ties % Losses
Opponent: 1SLA

1 RHEA 76.50 (3.0) 1.50 (1.0) 22.00 (3.0)
MCTS 97.00 (1.0) 1.00 (1.0) 2.00 (1.0)

2 RHEA 88.50 (2.0) 3.50 (1.0) 8.00 (2.0)
MCTS 95.00 (2.0) 2.00 (1.0) 3.00 (1.0)

4 RHEA 90.50 (2.0) 2.50 (1.0) 7.00 (2.0)
MCTS 97.00 (1.0) 2.50 (1.0) 0.50 (0.0)

∞ RHEA 81.00 (3.0) 0.50 (0.0) 18.50 (3.0)
MCTS 98.50 (1.0) 1.50 (1.0) 0.00 (0.0)

Opponent: Rule-Based

1 RHEA 76.50 (3.0) 3.00 (1.0) 20.50 (3.0)
MCTS 68.50 (3.0) 19.50 (3.0) 12.00 (2.0)

2 RHEA 45.00 (4.0) 27.00 (3.0) 28.00 (3.0)
MCTS 74.00 (3.0) 22.50 (3.0) 3.50 (1.0)

4 RHEA 55.00 (4.0) 22.50 (3.0) 22.50 (3.0)
MCTS 70.00 (3.0) 28.00 (3.0) 2.00 (1.0)

∞ RHEA 40.50 (3.0) 23.50 (3.0) 36.00 (3.0)
MCTS 73.00 (3.0) 23.00 (3.0) 4.00 (1.0)

Opponent: RHEA
1 MCTS 68.50 (3.0) 14.00 (2.0) 17.50 (3.0)
2 MCTS 22.50 (3.0) 59.00 (3.0) 18.50 (3.0)
4 MCTS 7.50 (2.0) 85.50 (2.0) 7.00 (2.0)
∞ MCTS 9.00 (2.0) 84.00 (3.0) 7.00 (2.0)

third section of Table 7.3), but very similar to RHEA in the other vision ranges. RHEA, with VR= 1, loses
85.5% of games and ties rarely, a trend that changes for the other values of VR where ties become more
frequent than losses.

TEAM

In team games, we can observe a similar performance of the algorithms with interesting differences. When
playing against 1SLA (top of Table 7.4), both RHEA and MCTS achieve high victory rates and low ties, as
seen in FFA, with MCTS close to 100% win rate in all VR options. RHEA appears to perform better with
high VR (and still wins fewer games than MCTS). RHEA appears to perform better with low VR with the
exception of VR = 1, highlighting the algorithm’s problems with restricted PO.

The average MCTS win rate when playing against the Rule-Based AI is higher than previously observed
in FFA games, around 70% vs 46.5%. This is probably due to having two strong agents on the same team.
The performance of MCTS is kept fairly consistent regardless of VR (second section in Table 7.4). When
MCTS plays RHEA, the former algorithm dominates when VR= 1, but they achieve a similar performance
with higher visibility, increasing the number of matches finished in ties.

This doesn’t mean, however, that playing style does not vary when VR is changed. Figure 7.3b shows
heatmaps of bomb locations by MCTS for all VR options. As can be observed, low observability leads to
significantly less and very specific bomb placements. When VR = 1 there are less bombs placed than with
higher VR values, but they are more localised around the starting position. In higher visibility, the bombs
are more spread out around the level. However, making the game fully observable encourages the agent to
explore more and scatter bombs across the entire map. It seems clear that the presence of PO hinders the
capability of the agents to use many bombs.

RHEA’s performance is again low with reduced vision range, but similar to MCTS with vision range
4 (the default option in the “Pommerman” competition). In terms of bomb placement, however, one can
see a clear difference with MCTS. Figure 7.3a shows a difference between RHEA and MCTS, especially
in intermediate VR values, showing a higher number of bombs being dropped by the former (which agrees
with the observations seen in Figure 7.2. In the case of RHEA, bombs are more concentrated around the
starting position and around the edges of the board than MCTS, where we see a more even spread in the
starting corner and towards the centre of the map. This clearly shows that both SFP algorithms behave (i.e.
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explore the search space) differently. The large amount of bombs placed by RHEA may also explain why it
tends to suicide more often.

(a) Percentage of deaths caused by the own agent
bombs.

(b) Number of bombs placed per game.

(c) Number of pick-ups collected.

Figure 7.2: Events recorded during the FFA games played (results for TEAM are very similar). All charts
show values for VR = {1, 2, 4,∞}. Shaded area shows the standard error of the measure.

(a) RHEA.

(b) MCTS.

Figure 7.3: Bomb placement by RHEA and MCTS in TEAM mode. From left to right: V R =∞; V R = 4;
V R = 2; V R = 1. Agent starts in the top left corner.
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7.2 RHEA in Tribes
The work in this section was published at AIIDE 2020:

D. Perez-Liebana, Y.-J. Hsu, S. Emmanouilidis, B. Khaleque, and R. D. Gaina, “Tribes: A New
Turn-Based Strategy Game for AI,” in Proceedings of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment, vol. 16, no. 1, 2020, pp. 252–258.

Figure 7.4: “Tribes” (left) and The Battle of Polytopia (right).

The second environment explored in this chapter is “Tribes”, looking at the strategy games category.
“Tribes” is a clone of the popular award-winning game The Battle of Polytopia (175), which can be seen as
a simplified version of Sid Meier’s Civilization (176). Both the original game and the “Tribes” framework
are depicted in Figure 7.4. “Tribes” is a multi-player, multi-agent, stochastic, partially observable, highly
strategic environment. Play happens on a randomly generated level (2D grid of N × N tiles), initially
covered by fog of war except for the spawning locations of each player. Each tile has one terrain type
associated (plain, mountain, shallow or deep water) and one type of resource, if any present (forest, cattle,
food, crops, ore, ruins, fish and whales). There are two special types of terrains as well: villages (which are
neutral and may be conquered by the players and converted into cities), and cities (which are owned by a
player, may be conquered by other players, may level up and are able to spawn units). Only one unit may
occupy a tile at any time (no overlapping is allowed). The tiles within a city’s border (a square of 5× 5 tiles
initially, with the city in its centre) are considered to belong to that city (and therefore the tribe owning the
city). Tiles outside all city borders are considered neutral.

The board generator is a configurable rule-based system, which takes into account the tribes taking
place in the game in order to generate their unique biomes around their starting locations, with different
terrains or resources to fit their starting technologies. The generation process begins by distributing land
and water tiles in the level; capital cities are then placed in land tiles, as far as possible from each other. All
other terrain types, neutral villages and resources are added in last. The “Tribes” level generator is a Java
port of the generator developed by Pierre Schrodinger7.

As the name might suggest, tribes battle during the game for control of the board. Each tribe mainly
consists of several controllable units and cities. There are several types of units with different proper-
ties (attack power, defence, attack range and health points). They can be melee (warrior, rider, defender,
swordsman and knight) or ranged (archer and catapult). All can move into a port in the water in order to
embark onto a boat (a special type of unit that can move in water tiles; this can be upgraded to a ship, and
then a battleship, for increased movement, defence and attack power). All units can become a veteran by
defeating 3 other units, which increases their health points. All units can move on land tiles (and water tiles
if on a boat). All units (except for the mind bender) can also attack enemy units. The mind bender can heal
friendly units, or convert enemy units to their tribe. In a single turn, units may execute one or more of their
possible actions, depending on the unit type. All units (except for the mind bender) conquer neutral villages
or enemy cities by starting their turn in the corresponding tile.

Cities are the source of the game’s currency and produce stars, awarded to the player at the beginning
of each turn. Stars may be spent on spawning new units in a city (which are not able to execute actions until

7https://github.com/QuasiStellar/Polytopia-Map-Generator
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the player’s next turn), collecting resources within a city’s borders, improving owned tiles with buildings, or
researching technologies. Collecting resources and constructing buildings adds population to the city they
belong to, and reaching L+ 1 population (where L is the city’s level, initially 1) results in the city levelling
up to produce more stars, and offering a choice between 2 bonuses such as extra star production, resources,
city border growth etc. After a city reaches level 5, a super unit or giant may be spawned, or a park built
in the city which awards extra points. Buildings may offer additional bonuses depending on neighbouring
tiles. Buildings may also be destroyed to free up a tile and retrieve some of its star cost back.

Each tribe has access to a technology tree. Researching a new technology is available if the player
has enough stars and if its parent technology has been researched already, and unlocks new abilities for the
tribe, such as constructing new buildings, collecting more resources, movement in deep water or mountain
tiles, or building roads (which increase unit movement and may add population if cities become connected
through roads).

Gameplay: Tribes each start in a location designated as a potential starting place on the given board,
with different unit types and different technology already researched. Each player (minimum 2, maximum
4 currently supported) controls one of the tribes (Xin Xi, Imperius, Bardur and Oumaji), starting with 1
capital city and 1 unit (depending on the tribe selected: warrior for Xin Xi, Imperius and Bardur; and
rider for Oumaji) placed on the board. Additionally, each tribe also begins with a technology already
researched (Climbing, Organisation, Hunting and Riding, respectively). During the game, the players take
turns to choose actions. During a player’s turn, any number of actions may be taken; a turn ends when
no more actions are available, or the player chooses the End Turn action; alternatively, turns may be
time-constrained in the “Tribes” framework.

The framework supports two different game modes, which enforce different end of game conditions. In
the Capitals game mode, a player wins once they conquer all capital cities on the board. In the Score game
mode, the game ends after 30 rounds (where 1 round consists of 1 turn played by each player), and the
player with the highest number of points wins. Points can be gained through collecting resources, exploring
the map (and revealing information hidden by fog of war) or capturing neutral villages. A player loses in
both cases if their capital is captured.

Summary: “Tribes” is overall a complex game, with many aspects to it, including technology research,
economy management, build orders and combat. Full details of the game rules and all game parameters (unit
properties, technologies etc.) are available in the fandom page8. The framework code and documentation is
available on GitHub9. The rest of this section gives an overview of strategy games, the place “Tribes” has
within this domain and the research opportunities it brings, as well as showing the performance of several
game-playing AI methods, including RHEA, in this environment.

7.2.1 Strategy Games
Some of the first applications of AI in turn-based strategy games were seen in 2004, by Arnold et al. (177) in
the game “Freeciv”10, an open-source free game inspired by Sid Meier’s “Civilization” series and including
most of the complexities of the original game in the interactions between potentially hundreds of players.
The game comes with in-built AI, which uses a set of rules and a goal priority system to decide its actions.
However, the intricacy of the problem and the many sub-problems involved (e.g. troop movement, battles,
resource gathering and management, city development, technology advancements) led researchers to only
tackle some of the aspects involved.

(177) tackled the initial placement of settlements for the player’s civilisation by using a Genetic Algo-
rithm (GA) to adjust the parameters of the city placement algorithm provided with the game. The authors
found that achieving good performance even in just this part of the problem was very difficult, although
seemingly good policies are general enough to be applicable on new maps. (178) discussed instead the
problem of city development in “Freeciv”, and proposed using an online GA to evolve a city development
strategy; here, they use a 2-layer genome, where the top layer considers the cities to focus on, and the
bottom layer considers development factors (e.g. happiness, food supply) for each city. Later, (179) ap-
plied Q-Learning to “Civilisation IV” for the city placement problem, to replace the previously explored
rule-based system and create a more dynamic and adaptive approach. Their results show their method is
able to outperform the rule-based system in short games and on small maps, but begins to struggle when the
complexity increases. With “Tribes” we aim to make it more attainable to create an AI player able to fully
undertake complex decision-making in large dynamic and multi-faceted environments.

8polytopia.fandom.com/wiki/The Battle of Polytopia Wikia
9https://github.com/GAIGResearch/Tribes

10The Freeciv Project, 1996-2020, http://www.freeciv.org/
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One critical aspect of “Tribes” is the challenge of multiple actions executed per turn, and planning turns
accordingly to maximise results. (76) address this problem in “Hero Academy” (180), where the player
controls several agents with different actions available, with 5 action points per turn each. The authors
introduce Online Evolutionary Planning (OEP), which is able to outperform tree search methods due to
managing the large turn planning problem much better (155). Later, (81) propose an alternative which
combines evolutionary algorithms and tree search (EvoMCTS) in order to take advantage of the benefits of
both methods to outperform OEP. Both EvoMCTS and OEP were further applied to other strategic games
with moderate success, although large action spaces prove challenging to both approaches (38).

This problem of very large action spaces in turn-based strategy games was recently highlighted in the
Bot Bowl framework (181), which presents an implementation of the board game “Blood Bowl” (182).
In this game, players control an entire football team, where each unit can execute several actions, leading
to a very large turn-wise branching factor. In the first competition using this framework in 2019, Grod-
Bot, the rule-based baseline agent, outperformed all other submissions (two Actor Critic methods and an
evolutionary-tuned GrodBot), showing the difficulty of the problem. “Tribes” has a large but smaller action
space, but adding several complexities to the decision-making problem beyond troop actions.

Similar tasks can be found in real-time strategy games. (183) review challenges presented in these
games, of which “Starcraft II” has recently seen great success with the development of AlphaStar (184),
a deep-learning agent able to play the game with high proficiency. The general and practical applicability
of such methods remains a question, however, and the microRTS competition attempts to promote research
into general methods able to handle different scenarios and maps within a simplified version of a real-time
strategy game (185). This is similar to the approach taken in “Tribes”, where the AI is challenged on
procedurally generated maps, with more variation in units available, their interactions, a very high variance
in action space per step and the addition of technology research and the economic system.

To sum up, there have been previous frameworks focused around strategy games, including access
to a forward model to enable the instant powerful play of statistical forward planning methods (Hero-
AIcademy (76), Bot Bowl (181), Santiago Ontañón’s µRTS (185)). However, to the knowledge of the
authors, there was no other framework that captures all of the complexities of real-time or turn-based strat-
egy games, while also providing forward model access.

“Tribes” aims to fill in this gap. The framework facilitates research on procedural content generation
for levels and automatic game balancing as well, as it exposes a very large set of parameters that adjust the
behaviour of the game. This is an interesting research direction that would open the door to creating more
interesting levels and game variants.

7.2.2 The Framework

“Tribes” is implemented in Java and includes possibilities for full customisation of game parameters, as well
as additional features to those already mentioned. Games can be run either as fully observable, or partially
observable, as in the original game. If partially observable, hidden tiles are indicated in player observations
as “fog” terrain types and treated as plain terrain types in game simulations. Fog tiles are revealed when a
friendly unit moves within range of it. We define vision range as the maximum Chebyshev distance d from
a unit that a tile needs to be within, so as to be observed by that unit. Vision range is set to 1 by default, but
is increased to 2 when a unit is on a mountain tile.

The players are repeatedly asked for actions by the engine on their turn. Each time they have to return
an action, they receive a game state observation (copied instance of the real game state), with reduced
information about enemy cities and units regardless of observability settings: the number of kills and city
of origin for units, and the population, star production and units originated there for cities, are hidden. The
observation can be queried for available actions. Additionally, players can run simulations of the potential
effect of actions using the forward model provided with their observation.

We note that executing actions could make new actions possible in the resulting game state (e.g. spawn-
ing new types of units, as a result of researching a technology), or may make some impossible (e.g. spending
stars would make higher cost actions unavailable, or moving a unit to a tile would block access to that tile
for other units). Thus the action space during a player’s turn is non-linear and may increase or decrease
over time, depending on their decisions and resource management.

7.2.3 Agents

The framework code includes 7 AI players, 2 of which are very simple: DoNothing returns End Turn
actions only, and Random returns one action out of all possible, chosen uniformly at random. MCTS,
RHEA (with a shift buffer enabled) and the previously seen 1SLA player (greedily selecting actions) are
also included. The other 2 players are described next:
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Rule-Based (RB): This player follows a series of rules to decide what to do next, depending only on
the current game state (it does not consider future game states and does not use the forward model for
simulations). All available actions are assigned a score between 0 and 5, the one with the highest score
being chosen to play (with ties broken uniformly at random). To calculate these scores, the action type is
considered first, then the action’s parameters, as follows.

Attack actions are scored based on the attack power and health points of the attacking unit, and the
defence power and health points of the defending unit (therefore anticipating the result of this attack). The
action is scored higher if the attack is going to succeed, and lower otherwise. This action is valued lowest if
attacking strong units that are not defeated by the attack, and the resulting counter-attack would defeat the
attacker instead.

Move actions are scored based on the distance to powerful or weak enemy units, villages and cities. The
action is scored higher if it reduces the distance to weaker enemy units, villages or enemy cities. The action
is scored lower if it brings the unit in attack range of strong enemy units.

Capturing cities and villages, examining ruins and making a unit a veteran are always given the highest
possible score. These are special actions that always provide bonuses for the player, thus they are played as
soon as they become available. When levelling up, the following bonuses are chosen at each level, in order:
extra production, extra resources, city border growth, and spawning a super unit (levels 5 and up).

Upgrading units and spawning units actions are scored based on the type of unit, stars available and
the presence of enemy units within city borders (the last of which reduces the priority of these actions).
Similarly, building and resource gathering consider stars available and population gain, calculating the
price-quality trade-off.

The Mind Bender’s convert action is scored higher for stronger enemy units and its heal action is relative
to the number of units affected. Researching a technology is scored based on the tier the target technology
is in, giving higher priority to those in lower tiers (therefore this player focuses on breadth of technologies,
rather than depth).

Disbanding a unit and destroying a building are never executed. These actions are often available, but
they are useful only in specific circumstances that require more careful planning than what this player is
able to do.

As actions are evaluated independently, this player lacks an overall outlook on the situation and strategic
planning. This player also shows a lack of unit coordination and poor resource management. However,
it incorporates human knowledge and is therefore able to make good tactical decisions, and serves as a
baseline for comparison with all other players.

Monte Carlo (MC): This player implements Monte Carlo search, which repeatedly executes rollouts (se-
quences of random actions) from the current game state to a predetermined depth. The last state reached
by the rollout is evaluated with the state evaluation function detailed below. This value is associated with
the first action in the random sequence. MC returns the action from the current game state that achieved the
highest average value over all iterations.

State Evaluation Function RHEA, MCTS, 1SLA and MC all use the same heuristic function for evalu-
ating game states. In “Tribes”, this function considers 7 different features (φ, as the difference (or change)
from a state to another:

• ∆φ1
star production increase/decrease

• ∆φ2
number of technologies researched

• ∆φ3 game score gained/lost

• ∆φ4
cities conquered/lost

• ∆φ1 units spawned/lost

• ∆φ1
enemy units defeated

• ∆φ1
city level increase (sum of all owned cities’ levels)

A linear combination of these features is calculated, weighted by the weight vectorW = {5,4,0.1,4,2,3,2}
(manually adjusted to reflect the relative importance of each feature), for each player in the game. This cal-
culation represents the progress of a player from one game state to another. We denote the value for the
player evaluating the game state as vp. The values for all enemy players are averaged as ve, and the final
value of the game state becomes v = vp − ve. This final value represents the relative progress of the player
compared to the others in the game.
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In practical terms, the features are calculated as the difference between the current game state and the
game state reached at the end of a rollout (for MC and MCTS), at the end of an individual in RHEA, or
after one action applied in 1SLA.

7.2.4 Experiments and Analysis
The parameters of the AI players were first adjusted after small experiments and observation of behaviour
in the game. We report here some considerations and configurations (some unsuccessful and discarded), for
completeness.

Root prioritisation: MC and MCTS both select a subset of actions (unit actions, city actions or tribe
actions) at random at the beginning of each iteration. The first action taken from the root is selected as
normal, but only from this subset of actions. From the second action on, all actions in the game state are
available to select from again. This suggested stronger playing performance, allowing the algorithms to
better focus their search in circumstances with many actions possible. This can be seen as an extremely
simplified version of Progressive Widening (186).

Forcing End Turn actions: The game has a large branching factor, which means the trade-off be-
tween rollout length and number of iterations (in the cases of MC, MCTS and RHEA) needs to lean towards
a higher number of iterations, in order to be able to explore as many actions as possible and build some re-
liable statistics as to which is best. This, together with the fact that players may play as many actions as
they want / are available on their turn, also means that rollouts would rarely simulate the actions of other
players (beyond the player’s own turn), and even more rarely would they see a second turn of their own
in their simulations (which would give a better indication as to the effect of their actions in the first turn,
and therefore allow for more consistent planning that holds up better in the long term). In order to address
this limitation, we considered forcing a play of the End Turn action every X steps (therefore imposing
a limit on how many actions a player can take in a turn). However, this did not improve results and was
discarded in final experiments. This limitation could prove useful in combination with other techniques,
such as Progressive Widening, move ordering functions or First-play urgency (187).

MCTS simulation step removal: It has been seen in recent works (188; 81) that skipping the simulation
step in MCTS and not performing any rollouts from the node added in the expansion step (evaluating this
game state instead, and backing up the value of this state) can boost overall performance. This was observed
in small tests, thus the MCTS agent does not use rollouts during its iterations in the final experiments
described here.

Algorithm parameters: In MCTS, we set the C constant in our UCB equation to
√

2 (as all rewards
observed are already normalised by the heuristic function). The rollout length in MC, MCTS and the
individual length in RHEA is set to 20 (values of 5 and 10 were tried and consistently provided worse
results). The population size in RHEA is set to 1 (therefore no selection or crossover is used; the 1 individual
is simply mutated, and the best sequence is kept for the next generation). Some previous work showed that
larger RHEA populations tend to provide better results in General Video Game Playing (15), however, sizes
of 5 and 20 did not outperform a population size of 1 in “Tribes”. A possible explanation for this is an
observed tendency by RHEA of generating invalid actions, which is likely to be caused by the crossover
operator. Future work will look into adding repair operators for RHEA and a closed loop more similar to
the MCTS implementation.

Action limits: The actions Disband and Destroy were removed from the list of possible actions for all
players, as no AI player used them for useful strategic decisions.

Experimental setup Each AI player played 500 2-player games against each other player, 20 repetitions
in the same 25 procedurally generated levels (using 25 different random seeds), all with a 11 × 11 board
size and a 1 : 1 water/land tile ratio. As levels are not guaranteed to be balanced (starting positions may be
better for some tribes than others), the 20 repetitions in a level are split in half so that players play 10 times
in a match-up, and 10 times more with positions swapped. The games are played only with the Xin Xi and
Imperius tribes, and in the Capitals game mode, with full observability. All games are terminated after 50
rounds - if no winner is declared by round 50, the player with the most points wins instead. MC, MCTS
and RHEA have a set budget of 2000 calls to the next function on their observations for every decision.

Results We present the results in Tables 7.5 and 7.6, with rows sorted from strongest to weakest players.
A head-to-head analysis of Table 7.5 shows that both RHEA and MCTS are able to reliably win against
simple users of the forward model (1SLA and MC; > 75% victories and > 60% victories, respectively).
It is worth noting, however, that the rule-based agent is surprisingly strong against both of these methods,
beating MCTS in 56.20% of the games and managing to rank slightly above it in overall standings as
well. This showcases the ample room for improvement available within the current players included in
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Table 7.5: Win rate for each row player averaged across 500 games against the column player. The values
between brackets indicate standard error.

Player RHEA RB MCTS MC 1SLA RND

RHEA * 58.60%
(2.20)

63.00%
(2.16)

77.80%
(1.86)

74.80%
(1.94)

100.00%
(0.00)

RB 41.40%
(2.20) * 56.20%

(2.22)
62.40%
(2.17)

70.20%
(2.05)

98.80%
(0.49)

MCTS 37.00%
(2.16)

43.80%
(2.22) * 62.00%

(2.17)
60.80%
(2.18)

98.60%
(0.53)

MC 22.20%
(1.86)

37.60%
(2.17)

38.00%
(2.17) * 54.80%

(2.23)
99.00%
(0.44)

1SLA 25.20%
(1.94)

29.80%
(2.05)

39.20%
(2.18)

45.20%
(2.23) * 99.40%

(0.35)

RND 0.00%
(0.00)

1.20%
(0.49)

1.40%
(0.53)

1.00%
(0.44)

0.60%
(0.35) *

Table 7.6: Statistics for all games averaged across 2500 game ends. The values between brackets indicate
standard error.

Agent Wins Rank Score Techs Cities Production

RHEA 74.84%
(1.50)

1.25
(0.03)

11610.56
(134.34)

88.95%
(1.78)

2.68
(0.05) 20.68 (0.41)

RB 65.80%
(1.32)

1.34
(0.03)

8076.32
(81.58)

71.14%
(1.42)

2.98
(0.06) 20.29 (0.41)

MCTS 60.44%
(1.21)

1.40
(0.03)

9966.55
(106.19)

85.27%
(1.71)

2.23
(0.04) 16.96 (0.34)

MC 50.32%
(1.01)

1.50
(0.03)

8065.96
(71.22)

82.35%
(1.65)

2.23
(0.04) 14.73 (0.29)

1SLA 47.76%
(0.96)

1.52
(0.03)

8927.05
(88.84)

82.31%
(1.65)

2.05
(0.04) 15.17 (0.30)

RND 0.84%
(0.02)

1.99
(0.04)

3708.76
(12.51)

58.54%
(1.17)

0.39
(0.01) 0.01 (0.00)

the framework, as well as the strength of the heuristics employed by the rule-based player, which could be
better employed within the SFP methods as well. All achieve close to 100% win rate against random, and
RHEA shows as the best out of the current set of players, beating MCTS in 63% of the games.

We can see more detailed statistics of each player in Table 7.6, with data averaged over all games played
by the row player, against all opponents. 4 measures are highlighted, which normally correlate with the win
rate (and used in the players’ heuristics): game score (final score achieved), percentage of technologies
researched, the number of cities owned at the end of the game, and the star production at the end of the
game. Although most measures show no particular surprises, the rule-based player stands out as an outlier
here, with less technologies researched and a lower game score than most other players (excluding random):
this player appears to focus most of its efforts in conquering enemy cities and increasing their cities’ power,
which is a strong strategy in the game mode chosen for the experiments. This indicates that the heuristics
used by the more advanced players can be further improved and take into considerations more aspects
of the game and more specific contexts as well. However, RHEA does still win the most even with less
cities owned (2.68 compared to 2.98 of the rule-based player), although they achieve similar levels of star
production, and technologies and game score in favour of RHEA. This suggests that different strategies are
also effective, with a potential rock-paper-scissors effect in play, although a deeper analysis is required to
analyse this phenomenon.

A last test carried out was pitting the strongest AI player (RHEA) against a human player (self-reported
as moderately good at the original The Battle of Polytopia game). Playing once in all 25 levels used for
the experiments, with tribes assigned randomly, RHEA shows its weakness against more advanced strategic
planning, being clearly dominated by the human player (100% win rate for the human player). However, this
test does show interesting insights into RHEA’s behaviour: although it is able to make strong tactical short-
term decisions (e.g. defending their own cities), it largely lacks unit coordination and shows fairly poor
resource management. Taking this information forward and integrating it into more advanced heuristics
could further improve the strength of this algorithm.
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7.3 RHEA in Tabletop Games
The work in this section was published at EXAG 2020 and on arxiv:

R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. Perez-Liebana, “TAG: a Tabletop Games
Framework,” in Proceedings of the AIIDE workshop on Experimental AI in Games, 2020.

R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. Perez-Liebana, “Design and Implementation of
TAG: a Tabletop Games Framework,” arXiv preprint arXiv:2009.12065, 2020.

(a) Pandemic (b) Uno

(c) Colt Express (d) Love Letter

Figure 7.5: Example games in the TAG framework.

The last environment explored in this chapter moves away from video games and into the realm of
tabletop games instead. In the last few decades, tabletop games have gone through a ‘Renaissance‘, gaining
more popularity than ever: thousands of them are published each year and welcomed by an expanding
audience of gamers (189). Many of these games are typically designed with richer mechanics and rules,
and less focus on chance-based elements. Modern tabletop games are very diverse and complex in general,
which can provide various challenges, such as unique game state representations, partial observability on
various levels, actions outside of a player’s turn, cooperation, and competition in the same game, etc.
Therefore, they have a very different and complex set of mechanisms that would require a lot of effort to
develop using previous approaches.

AI Research in board games has mostly been, with some exceptions, focused on traditional board games,
either in isolation (chess, Othello, Go, etc.) or as part of general game playing (GGP) frameworks, such
as GGP (190), Ludii (191) and OpenSpiel (192). While these frameworks also allow the definition of
additional games, they are limited to common mechanics or require extensive development effort.

In this section, we discuss the Tabletop Games (TAG) framework, which is a collection of tabletop
games, agents, and development tools meant to provide a common platform for AI research. This work is
mainly motivated by three factors: i) the characteristics of modern tabletop games (multi-player, partially
observable, large action spaces, competition, and collaboration, etc.) provide an interesting challenge to
AI research. These modern games provide many characteristics not implemented in existing frameworks,
e.g. changing player roles or varying forms of cooperative and competitive game-play; ii) TAG presents
tabletop games from a GGP perspective, by providing a common API for games and playing agents; and
iii) we aim to provide a framework that can incorporate different games under a common platform, making
it possible for the research community to implement their own games and AI players to expand TAG’s
collection. De Araujo et al. (193) highlighted the need for such a framework in a survey that described the
different schemes and data structures used in the literature of digital board games.

In order to provide the necessary flexibility to support the great variety of existing tabletop games,
TAG requires the user to implement games via a programming language (Java), instead of using a game
description language as other general frameworks do. TAG provides many customisable components to
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simplify the development of additional games not currently in the framework. It is able to handle partial
observability, providing simple means of adding custom observation schemes, game state heuristics, and
agent statistics, as well as supporting the development of graphical user interfaces for human play with
computer players.

While we are working on extending the framework with additional game mechanics, games and agents,
the current version is publicly available11. The contributions of this section are twofold: firstly, we present
the framework, its structure, games and AI players implemented (see Section 7.3.2). Secondly, we provide
a discussion on a baseline experimentation (Section 7.3.3), aimed at illustrating insights into the games
implemented, their features, and performance of vanilla AI players. In Section 7.3.4 we discuss challenges
and opportunities for this framework.

7.3.1 Tabletop Games
AI research and board games have been closely related since the beginnings of the field, with game-playing
agents for “Tic-Tac-Toe”, Checkers and chess (194), and the more recent breakthroughs in Go (188). One
of the most well-known contests, the General Game Playing (GGP) competition (190), featured classical
board games written in the Game Description Language and promoted research into generic game players.
(191) later introduced the “ludemic” general game system Ludii, which builds upon ideas from GGP. Ludii
defines games as structures of ludemes, high-level, easily understandable game concepts, which allows for
concise and human-understandable game descriptions, as well as easy implementation of new games. The
current main focus of the Ludii project is on classical and ancient board games. Kowalski et al. presented
in (195) a new GGP language, called Regular Boardgames (RBG), with a similar focus as Ludii, but which
describes games as regular expressions instead, for increased efficiency.

We consider direct code implementations to be more accessible, faster to execute and easier to work with
in many cases. More similarly to our framework in this regard, OpenSpiel (192) provides a collection of
games and algorithms written in C++ and exposed to Python. Most of their games are still traditional board
games, with some exceptions, such as the inclusion of “Hanabi”. Differently, TAG shifts the development
effort onto the framework, rather than the games, by making a wide range of components, rules, actions,
etc. available to users. Our system allows for fast prototyping of new games and immediate extraction of
insights and features of interest in each game through readily-available game and AI-facilitated analysis. We
further support many research directions, from simulation-based game-playing to parameter optimisation
of games and artificial players.

Kowalski et al. presented in (195) a new GGP language, called Regular Boardgames (RBG), with the
objective of joining key properties such as expressiveness, efficiency, and naturalness of GGP languages,
compensating certain drawbacks of the existing languages. According to authors, the RBG language allows
efficient encoding and playing games with complex rules and large branching factors (such as “Amazons”,
large chess variants, Go, paper soccer, etc.).

Here, we focus on more types of games, including board, card, dice and role-playing games, among
others, often grouped under the tabletop games umbrella term. “Tabletop Simulator” (196) is an example
of software facilitating implementation of tabletop games components in a physics-based simulated en-
vironment; this allows players to interact with the games as they would in the real world, but the many
games implemented lack support for automatic rule execution, nor does the software facilitate AI research
as targeted with TAG. However, tabletop games research has been gaining popularity in recent years. Re-
search in game-playing agents for card games is common in competitive (poker (197) and bridge (198)) and
cooperative (“Hanabi” (199)) games.

Asymmetric player roles is one feature often encountered in modern tabletop games, and these have
been studied in games such as “The Resistance” (200) and “Ultimate Werewolf” (201). This is just another
complexity added in modern tabletop games, yet more lead to the need for intricate strategic planning. To
this extent, Monte Carlo Tree Search (MCTS) methods have been tried in “Settlers of Catan” (202) and
“Risk” (203), and Rolling Horizon Evolutionary Algorithms (RHEA) in “Splendor” (161), all showing a
great improvement in performance. Other games have been more recently highlighted as important chal-
lenges for AI players due to their strategic complexity (“Pandemic” (204; 205)) or very large action spaces
(“Blood bowl” (181)).

Research has not only focused on game-playing AI, however. “Ticket to Ride” (206) was used as an
example for employing AI players for play-testing games, characterising their features based on different
play-styles and finding possible bugs or gaps in the rule-set. Further, the use of Procedural Content Gener-
ation for such games is highlighted by (207); given the rule complexities and the multitude of components
in modern tabletop games, AI methods can provide a more efficient way of searching the possibility space
for interesting variations.

11https://github.com/GAIGResearch/TabletopGames
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The Tabletop Games (TAG) framework introduced in this paper brings together all of these different
research directions and provides a common ground for the use of AI algorithms in a variety of tabletop
games, removing the effort of creating different frameworks for different purposes and simplifying the
overall development process. As far as we know, TAG is the first framework that allows the development
of multiple games and AI players under a common API for complex modern tabletop games.

7.3.2 The Framework
TAG was designed to capture most of the complexity that modern tabletop games provide, with a few games
implemented already and more in progress.

Concepts

Our framework includes handy definitions for various concepts and components common across many
tabletop games (189).

We define an action as an independent unit of game logic that modifies a given game state towards a
specific effect (e.g. player draws a card; player moves their pawn). These actions are executed by the game
players and are subject to certain rules: units of game logic, part of a hierarchical structure (a game flow
graph). Rules dictate how a given game state is modified and control the flow through the game graph (for
instance, checking the end of game conditions and the turn order). This turn order defines which player
is due to play at each time, possibly handling player reactions forced by actions or rules. At a higher level,
games can be structured in phases, which are time frames where specific rules apply and/or different actions
are available for the players.

All tabletop games use components (game objects sharing certain properties), whose state is modified
by actions and rules during the game. TAG includes several predefined components to ease the development
of new games:

• Token: A game piece of a particular type, usually with a physical position associated with it.

• Die: A die has a number of sides N associated with it and can be rolled to obtain a value between 1
and N (inclusive).

• Card: A card usually has text, images or numbers associated with any of its 2 sides, and is the most
common type of component used in decks.

• Counter: An abstract concept used to keep track of a particular variable numerical value; usually
represented on a board with tokens used to mark the current value, but recognised as a separate object
in this framework. It has a minimum, maximum and current value associated with it, where the
current value can vary between the minimum (inclusive) and maximum (inclusive).

• Graph board: A graph representation for a board, as a collection of several board nodes connected
between each other.

• Board node: A node in a graph board which keeps track of its neighbours (or connections) in the
board.

• Grid board: A 2D grid representation of a board, with a width and height associated with it. It can
hold elements of any type.

Components can also be grouped into collections: an area groups components in a map structure in
order to provide access to them using their unique IDs, while a deck is an ordered collection with specific
interactions available (e.g. shuffle, draw, etc.). Both areas and decks are considered components themselves.

Structure

The TAG framework brings together all of the concepts and components described previously and allows
quick implementation and prototyping of new games. Its structure consists of several packages:

• core: All core framework functionality.

• evaluation: Classes for running tournaments and evaluations of games or AI players.

• games: Specific implementations of core functionality for each game.

• gui: Generic Graphical User Interface (GUI) helper classes. Each game can extend this to implement
customised GUIs.
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• players: All players (human and AI) available.

• utilities: Various utility classes and generic functionality shortcuts.

A flexible API is provided for all functionality needed to define a game, with multiple abstract classes
that can be extended for specific implementations. The framework provides some generic functionality,
from ready-made components, rules, actions, turn orders and game phases, to a fully functional game loop
and a prototyping GUI. The GUI allows users to start interacting with the games as soon as they have the
two main classes required set up: a Game State (GS) class, and a Forward Model class.

GS is a container class, including all variables and game components which would allow one to de-
scribe one specific moment in time. It defines access methods in the game state to retrieve existing game
components, make custom and partially observable copies of the state, and define an evaluation function
that can be used by the playing agents. The FM encompasses the logic of the game: performs the game
setup, defines what actions players can take in a particular game state, applies the effect of player actions
and any other game rules applicable, uses a turn order to decide which player is due to play next (or may
wait for all players to return an action before processing for simultaneous-actions games), and checks for
any end of game conditions. The FM is available to AI players for game simulations.

For each game, users can further implement specific actions, rules, turn orders, game parameters (for
easy modification of game mechanics), a GUI and provision of game data. The last is useful when the game
requires large amounts of data such as tile patterns, cards and board node connections, and it is provided
via JSON files. A full guide on using the framework and implementing new games is available in the wiki
provided with the code and in (23).

TAG’s game-loop is presented in Algorithm 8. Given a list of agents and parameters of the game to be
played, the framework performs an initial setup of the game state (s0) and the game’s forward model. While
the game state is not terminal, the turn order selects the next player to act. To ensure partial observability,
we generate an observation object for the current agent which hides the state of unobserved components.
Hence, a list of available actions is generated and the agent is queried to provide the next action to be
executed (at). Finally, the forward model is used to modify the game state given the action (producing
st+1), and the graphical user interface is updated accordingly.

Algorithm 8 Overview Game Loop

1: Input: list of agents, game parameters gp
2: Output: win rate statistics

3: s0, FM = SETUPGAME(gp)
4: while not ISTERMINAL(st) do
5: agent← GETCURRENTPLAYER(st)
6: observation← GETOBSERVATION(st, agent)
7: actions← FM.GETAVAILABLEACTIONS(st, agent)
8: at ← agent.GETACTION(observation, actions)
9: st+1 ← FM.NEXT(st, at)

10: GUI.UPDATE()

Games

There are currently 8 games implemented in the framework, varying from very simple test games (“Tic-
Tac-Toe”) to strategy games (“Pandemic” (208)), as well as diverse challenges for AI players. A few games
are currently in active development (“Descent” (209), “Carcassonne” (210) and “Settlers of Catan” (211)),
and many more are in the project’s backlog, including games from other frameworks to allow for easy
comparison (see Section 7.3.1). Further development plans also include adding easy to use functionality for
wrapping external games, so that a direct comparison can be carried out under the same conditions without
the need to re-implement games under our framework’s full restrictions.

All games implemented can be found in the games package, each registered in the games.GameType
class; this class allows specifying properties for each game, to allow for automatic listing for experiments
(e.g. a list of all games with the “cooperative” tag). We highlight next some particularities of the games
currently implemented in the framework.

Tic-Tac-Toe 2 players alternate placing their symbol in a N ×N grid until one player completes a line,
column or diagonal and wins the game; if all cells in the grid get filled up without a winner, the game is a
draw.
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Figure 7.6: GUI for “Love Letter”, red outline shows current player (player 3).

This is the simplest game included in the framework, meant to be used as a quick reference for the
minimum requirements to get a game up and running. Its implementation makes use of mostly default
concepts and components, but it implements a scoring heuristic and a custom GUI for an easier interaction
given the specific game mechanics.

Dots and Boxes The game starts with a 2D grid with dots in the corners of each grid cell. 2 to 5 players
alternate placing cell edges (or lines connecting the dots), with the aim of adding all edges to a cell, which
earns the player a point and awards them another turn. The player with most points at the end wins.

This is a fairly simple game used for illustration of game implementation in video tutorials12. Its imple-
mentation is very similar to “Tic-Tac-Toe”, but includes further GUI customisation and a more advanced
game state representation.

Love Letter (212) 2 to 4 players start the game with one card each, representing a character, a value and
a unique effect. A second card is drawn at the start of each turn, one of which must be played afterwards.
Card effects can target other players and may exclude them from the remaining game. After the last card of
the deck is drawn, the player with the highest valued card wins the current round. A player wins the game
after winning 5 rounds. “Love Letter” features partial observability, asymmetric and changing player roles
and a point system over several rounds. Figure 7.6 shows an example game state.

Uno (213) The game consists of coloured cards with actions or numbers. Numbered cards can only be
played in case either the colour or the number matches the newest card on the discard pile. Action cards
let 2 to 10 players draw additional cards, choose the next colour to be played or reverse the turn order. A
player wins after gaining a number of points over several rounds (computed as the sum of all other players’
card values). “Uno” features stochasticity, partial observability and a dynamically changing turn order. This
game has the potential of being the longest game in the framework, since players need to draw new cards
in case they cannot play any.

Virus! (214) 2 to 6 players have a body each that consists of four organs, which can be: infected (by
an opponent playing a virus card), vaccinated (by a medicine card), immunised (by 2 medicine cards) or
destroyed (by opponents playing 2 consecutive virus cards). The winner is the first player who forms a
healthy and complete body. “Virus!” features stochasticity and partial observability, with the draw pile and
opponents’ cards being hidden.

Exploding Kittens (215) 2 to 5 players try to avoid drawing an exploding kitten card while collecting
other useful cards. Each card gives a player access to unique actions to modify the game state, e.g. selecting
the player taking a turn next and shuffling the deck. This game features stochasticity, partial observability
and a dynamic turn order with out-of-turn actions: in contrast to previous games, “Exploding Kittens” keeps
an action stack so that players have the chance to react to cards played.

12https://youtu.be/-U7SCGNOcsg and https://youtu.be/m7DAFdViywY
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Colt Express (216) 2 to 6 players control a bandit each, with a unique special ability. Their goal is to
collect the most money while traversing the two-level compartments in a train and avoiding the sheriff (a
non-playing character moved by players and round card events). The game consists of several rounds, each
with a planning (players play action cards) and an execution (cards are executed in the same order) phase.
This processing scheme forces players to adapt their strategy according to all the moves already played,
in an interesting case of partial observability and non-determinism: the opponents’ type of action may be
known (sometimes completely hidden in a round), but not how it will be executed. Additionally, the overall
strategy should be adapted to a bandit’s unique abilities.

Pandemic (208) “Pandemic” is a cooperative board game for 2 to 4 players. The board represents a world
map, with major cities connected by a graph. Four diseases break out and the objective of the players is
to cure them all. Diseases keep spreading after each player’s turn, sometimes leading to outbreaks. Each
player is assigned a unique role with special abilities and is given cards that can be used for travelling
between cities, building research stations or curing diseases. In each turn, the player can play up to 4
consecutive actions, with a changing action space (e.g. moving to a new city may result in new actions).
Additionally, they have access to special event cards, which can be played anytime (also out-of-turn). All
players lose if they run out of cards in the draw deck, if too many outbreaks occur or if the diseases spread
too much.

“Pandemic” features partial observability with face-down decks of cards and asymmetric player roles.
It employs a reaction system to handle event cards and is the only game currently using the graph-based
rule system.

AI Players

All implemented players follow a simple interface, only requiring one method to be implemented: getAction.
This receives a game state object reduced to the specific player’s observation of the current state of the game.
How this reduced game state is built is game-dependent, usually randomising unknown information. This
method expects an action to be returned out of those available and is called whenever it is the player’s turn
and they have more than 1 action available (i.e. the player actually has a decision to make). If no deci-
sion is required, the agent can choose to still receive and process the information on the game state (in the
registerUpdatedObservation function) but an action is not requested. They may also choose to
implement the initializePlayer and finalizePlayer functions which are called at the begin-
ning and end of the game, respectively. Each player has a player ID assigned by the game engine, and they
receive the forward model of the game currently being played. The FM can then be used to advance game
states given actions, compute actions available, or reset a game to its initial state. The rest of this section
defines the sample players implemented in the framework. These agents use the game’s score to evaluate
game states (as implemented on the game side), but their heuristic functions may be swapped with a dif-
ferent object implementing the IStateHeuristic interface. Custom heuristics take the current state as
input and return a scalar number representing the value of that state without any other restrictions. Agents
can be given a heuristic function on initialisation and then instead of using the reward directly from the
game they process every state they visit using the provided heuristic.

We include in the framework MCTS and RHEA players, as well as 2 simple AI players and 2 options
for playing games as a human.

Human Players Two types of human interaction are available, both of which interrupt the game loop
to wait for human actions on their turn. Console allows human play using the console. It outputs the
game state and available actions in the console and the player inputs the index of the action they choose
to play. GUI allows human play with a Graphical User Interface, which is game-specific. It uses an
ActionController object to register player action requests, which are then executed in the game.

Random The simplest automatic player chooses random actions out of those available on its turn.

One Step Look Ahead (1SLA) A greedy exhaustive search algorithm, it evaluates all actions from a
given game state and picks that which leads to the highest valued state.

MCTS and RHEA Adjustments The MCTS player runs up to depth 10 and without the simulation step,
as we have seen previously that this helps its performance in games with variable and non-linear action
spaces, as is the case for several games in the TAG environments. The forward model of the game is only
used when expanding a leaf node. The resulting node is immediately evaluated using the heuristic and its
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Figure 7.7: Action space size in “Uno” with all player number versions; 1000 runs per version played by
random players.

value is backed up through the tree. Further, the version implemented in the framework is closed-loop: it
stores game states in each of the nodes.

The RHEA player runs with 1 individual only of length 10, thus using only the mutation operator to
evolve its sequence. Given the variable action spaces and that actions available are highly dependent on
the current game state, the mutation operator chooses a gene in the individual (i.e. position in the action
sequence) and changes all actions from that point until the end of the individual to new random valid
actions. The game’s forward model is therefore used in both mutation (to advance the game state given
the last action, in order to find the available actions for the given position in the sequence) and evaluation
(game states reached through the sequence of actions are evaluated using the game’s heuristic, added up for
a discounted total with discount factor γ = 0.9, and this total becomes the fitness of the individual). It is
important to note that RHEA evolves only its own actions and opponents are given a random model (with
intermediate states after opponent actions ignored in fitness evaluations).

Given the differences in implementation, we expect an equal budget of forward model calls to result in
worse performance for RHEA, as its decision-making process is much more expensive than MCTS and it
can perform fewer iterations.

7.3.3 Discussion
This section gives an overview of game analytics which can be extracted from all games, as well as some
preliminary results for the sample AI players described in Section 7.3.2.

Game Analysis

Table 7.7: Analysis of games, played 1000 times for each possible number of players on each game, using
random agents.

µ1 µ2 µ3 µ4
µ5 µ6 µ7Setup Next Actions Copy #decisions #ticks #rounds #APT

Tic-Tac-Toe 5.69 6.79 1 0% 105 106 105 106 7.24 7.61 3.17 1 [0.0, 0.103] sd=0.02
Love Letter 4.74 10.78 24.00 62.96% 105 106 105 106 53.22 109.48 6.89 1.96 [0.0, 0.97] sd=0.20

Uno 1.88 4.32 116.00 92.3% 104 106 104 106 193.51 540.78 6.07 1 [-0.15, 0.27] sd=0.05
Virus! 9.70 11.03 78.00 89.1% 104 106 105 105 317.09 319.56 75.75 1 [0.0, 0.8] sd=0.17

Exploding Kittens 3.17 4.99 60.00 84.5% 105 106 105 106 51.86 73.23 8.98 1.07 [-0.5, 0.75] sd=0.11
Colt Express 2.91 5.46 87.60 87.67% 104 106 104 106 91.71 176.13 5.00 1.00 [-0.5, 0.5] sd=0.14

Pandemic 11.15 17.97 138.00 64.97% 102 105 104 105 108.62 173.94 8.25 5.58 [-1.0, 0.42] sd=0.12

All games in the framework can be analysed to illustrate the challenge they provide for AI players,
with several metrics currently readily available. Here, we present measurements currently implemented
and applied to the existing games described in Section 7.3.2. We measure the following averages, observed
in our experiments:

Action space size: the number of actions available for a player on their turn (e.g. Figure 7.7). Branch-
ing factor: the number of distinct game states reached through player actions from a given state. State
size: the number of components in a state. Hidden information: the percentage of components hidden
from players on their turn. Game speed: the execution speed of 4 key functions (in number of calls per
second): setup, next, available action computation and state copy. Game length: measured as the number
of decisions taken by AI players, the total number of game loop iterations (or ticks), the number of rounds
in the game and the number of actions per turn for a player. Reward sparsity: granularity of the heuristic
functions provided by the game, measured by min, max and standard deviation of rewards seen by players.
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More complete information and graphical visualisations can be obtained by running the
evaluation.GameReport class included with the framework. Results are presented in Table 7.7
(“Virus!” games were limited to 100 rounds, as random play can lead to infinite games).

When looking at the games currently implemented, the first thing to note is that all games are very fast to
execute: most games can execute over 1 million calls per second to the (usually) most expensive functions
(next and copy). The games vary in length, with only 7.61 ticks for the simplest game, “Tic-Tac-Toe”,
but 540.78 for “Uno”. We further see variations in the state size, with “Pandemic” showing most complex,
while “Uno” includes the most hidden information. “Love Letter” shows its strategic complexity through
the higher branching factor (10.78), while “Exploding Kittens” boasts one of the largest spread of rewards.

Many of the metrics reported do not paint a complete picture if only their average is given: action spaces,
for example, vary widely during play for most of the games presented. An example which highlights this is
“Uno”, where the action space is dependent on the number of cards in a player’s hand, increasing on average
as the game goes on (see Figure 7.7). It is further interesting to note here that games get shorter with more
players (as players would earn more points per round if they have more opponents, and thus more cards to
total the sum of) - an example of insights which can be obtained through analysis of the games themselves,
readily available for any newly implemented games in the framework.

Baseline AI Player Performance

We tested the performance of the sample agents on each of the implemented games. For “Tic-Tac-Toe”, we
report the win rate per agent when playing 100 times against every possible opponent. Since “Pandemic”
is a cooperative game, we report results from games played with a team of 4 instances of the same agent,
e.g. 4 MCTS players. For the remaining games, we report the average win rate per agent when playing in a
4-player match against one instance of all other agents. All but the random agent are using state evaluation
functions that are provided with each game. For both search-based algorithms, we use a budget of 4000
calls to the FM.next() function.

The average win rate per games is shown in Table 7.8. Our results indicate the MCTS agent to be the
best, achieving the highest average win rate in 5 out of 7 competitive games, with an overall win rate of
41% in these games - thus clearly dominating the other agents. While RHEA also outperforms random in
most of the games (with the exception of “Uno”), it still falls behind the 1SLA agent. This could be due to
the large uncertainty built up in its rigid sequences of actions (as opposed to the flexible game trees built by
MCTS) in these games with partial observability and stochasticity, where a greedy approach appears to be
preferable. Further, some games tested are simple enough that a greedy approach works best and are highly
advantaged by the heuristics provided by each game (e.g. “Tic-Tac-Toe”). However, we do observe RHEA
to clearly dominate all other agents in “Dots & Boxes”. This is an interesting case to be analysed in more
details.

Additionally, we note that no agent is able to win in the cooperative game “Pandemic”, as they are
unable to perform the multi-faceted long-term planning required to avoid all of the loose conditions and win
the game. Further analysis, such as the distance from winning game states for each AI team, could show
interesting insights into these agents’ capabilities (205). We note that Sfikas and Liapis (205) obtained good
results in the game, but with several simplifications to the environment and abstractions meant to aid the
decision-making process: No Event cards, which we do include (and often significantly increase the action
space for the player). Limited and fixed-order player roles, whereas we test all player roles, randomly
allocated at the beginning of the game (some of which significantly increase the action space). RHEA
controls all players in the game, as opposed to our version where 4 instances of RHEA control the different
players and create their own plans. Player actions are abstracted into macro-actions of different types,
which are ranked in terms of importance and used to seed RHEA; we do not use such domain knowledge
in our implementation and our RHEA agent only considers single actions. RHEA uses a determinization
enhancement (the hidden information in the state is randomised for each individual evaluation).

While such an experimental setting could be implemented in TAG, we consider these to be very spe-
cific domain adaptations and simplifications which move away from the general game-playing AI concept.
However, adopting an approach such as curriculum learning to start from a simplified setup and slowly add
features back in until we reach our full game implementation could aid in bringing the great results seen
in (205) into our more complex environment and will be explored in future work.

Moreover, we observe “Uno” and “Colt Express” as cases where the performance between all players,
including random, is very close (22− 26% in “Uno” and 19− 29% in “Colt Express”). This highlights the
difficulty of the types of problems proposed, as well as the importance of the heuristic chosen for a game,
as some features of a game state may prove deceiving.

However, the statistical forward planning methods described here (MCTS and RHEA) benefit from
ample literature with a large parameter space each, which could be tuned for increased performance.
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Table 7.8: AI player performance, 100 game repetitions. Highest win rate in bold. “Tic-Tac-Toe” played
in a round-robin tournament. “Pandemic” uses 4 instances of the same agent. All others played in their
4-player variants, with 1 instance of each agent.

Tic-Tac-Toe Dots & Boxes Love Letter Uno Virus! Expl. Kittens Colt Express Pandemic Total
Random 0.12 0.00 0.00 0.26 0.01 0.05 0.19 0.00 0.08
1SLA 0.45 0.14 0.24 0.26 0.27 0.37 0.29 0.00 0.25
RHEA 0.44 0.69 0.32 0.22 0.3 0.21 0.28 0.00 0.31
MCTS 0.98 0.17 0.44 0.26 0.42 0.37 0.26 0.00 0.36

7.3.4 Challenges and Opportunities

The presented framework opens up several directions of research and proposes a variety of challenges for
AI players, be it search/planning or learning algorithms. Its main focus is to promote research into General
Game AI that is able to play many tabletop games at, or surpassing, human level. Related, the agents
should be able to handle both competitive (most common testbeds in literature), cooperative and even
mixed games. For instance, a future planned development is the inclusion of the game “Betrayal at House
on the Hill” (217), in which the players start off playing cooperatively to later split into teams mid-way
through the game, from which point on they are competing instead with newly given team win conditions
and rules. Most tabletop games include some degree of hidden information (e.g. face-down decks of
cards) and many more players compared to traditional video-game AI testbeds, introducing higher levels
of uncertainty. However, such games often make use of similar mechanics, even if in different forms:
thus knowledge transfer would be a fruitful area to explore, so that AI players can pick up new game
rules more easily based on previous experiences, similar to how humans approach the problem. Some
tabletop games further feature changing rules (e.g. “Fluxx” (218)) which would require highly adaptive
AI players, able to handle changes in the game engine itself, not only the game state. Many others rely on
large amounts of content and components, for which the process of creating new content or modifying the
current one for balance, improved synergies etc. could be improved with the help of Procedural Content
Generation methods (e.g. cards for the game “Magic the Gathering” (219) were previously generated in a
mixed-initiative method by (220)).

Specific types of games can also be targeted by research, an option highlighted by TAG’s categorisation
and labelling of games and their mechanics. Thus AI players could learn to specialise in games using
certain mechanics or in areas not yet explored, such as Role-Playing or Campaign games (i.e. games
played over several linked and progressive sessions). These games often feature asymmetric player roles,
with a special one highlighted (the dungeon master) whose aim is to control the enemies in the game in
order to not necessarily win, but give the rest of the players the best experience possible and the right level
of challenge. Strategy AI research could see important applications in this domain, as many tabletop games
include elements of strategic planning. Role-playing games focused more on the story created by players
(e.g. “Dungeons and Dragons”) rather than combat mechanics (e.g. “Gloomhaven”) would also be a very
engaging and difficult to approach topic for AI players, where Natural Language Processing research could
take an important role.

The framework enables research into parameter optimisation: all parameter classes for games, AI
players or heuristics can implement the ITunableParameters interface; parameters can then be au-
tomatically randomised, or more intelligently tuned by any optimisation algorithm. This allows for quick
and easy exploration of various instances of a problem, a potential increase in AI player performance, or
adaptation of AI player behaviour to user preference.

We have mentioned previously that the games implemented offer reduced observations of the game
state to the AI players, based on what they can currently observe. These hidden information states (usually)
do not keep a history of what was previously revealed to a player. Instead, the AI players should learn to
memorise relevant information and build belief systems, as humans would in a real-world context - a very
interesting direction of research encouraged by TAG.

Lastly, the framework includes the possibility for games to define their states in terms of either vector
observations (IVectorObservation), which enables learning algorithms to be easily integrated with
the framework; or feature-based observations (IFeatureRepresentation), which allows for more
complex algorithms which can perform a search in the feature space of a game, rather than the usual game
state space approached.
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7.4 Conclusions
This chapter describes the application of RHEA in several specific environments. All of the environments
are much more complex than the GVGAI games used in previous experiments. RHEA is adapted slightly to
each scenario, in particular by using custom heuristics to evaluate game states. Its performance is then com-
pared against several algorithms in all cases, and shown to achieve great results and interesting behaviours.

Pommerman. First, we presented a study on the performance of statistical forward planning (MCTS and
RHEA) agents on the game “Pommerman”. The first conclusions that can be drawn are that SFP methods
are stronger than the Rule-Based and One Step Look Ahead agents they were compared against. Addi-
tionally, the configuration tested for MCTS seems to provide a better performance than that of RHEA. The
analysis carried out on the different algorithms shows that more offensive strategies (like RHEA dropping
more bombs on average) are normally also riskier, due to the known challenge of suicides in this game. In
fact, MCTS tends to place less bombs than the other agents, but achieves a higher winning percentage in
most modes and visibility settings. Partial observability increases the number of suicides for all agents, and
full observability brings the performance of MCTS and RHEA quite close. The PO setting also influences
where and how often bombs are placed (as seen in the heatmaps presented), and shows differences of be-
haviour between the different SFP methods. Adding heuristics and belief systems to remember where and
when bombs were placed may lead to a performance boost, as the agents could make better use of infor-
mation gathered in previous game ticks and use its experiences to the maximum benefit they can provide.
Another interesting observation is that many games end up in ties, especially when the visibility range of
the agents is greatly limited. One possibility to alleviate this is to adopt the collapsing boards methodology
followed in the “Pommerman”, by which winners are enforced.

RHEA is an algorithm with a large parameterisation space. Further tests done in “Pommerman” with
other parameters (P , L, mutation rate, etc.) have shown different results for different game settings. A
possibility of future work is to automatically tune RHEA parameters to boost the strength of this method,
which in many other games has shown competitive performance with MCTS. A similar approach can be
taken for MCTS, as in (32), although this algorithm has a smaller parameter space (comparing vanilla
versions). Our initial tests on this matter suggest that this is indeed possible.

Other lines of future work, which tackle directly performance in “Pommerman”, are of a wider interest
for the Game-Playing AI community. One of them is to learn an effective opponent model of the other
agents, which improves upon the random modelling assumed in this paper. The random model was seen
to often lead agents to take reckless decisions, as they might observe in their simulations that their oppo-
nents suicide, leaving the agent to believe that whatever they do, they can outlast their opponents (even if
that means dying themselves). Simple statistical modelling based on the frequency of actions have shown
promising results in the past for 2-player GVGAI (221) or other games (222). Other interesting avenues
for future work are to tackle partial observability by introducing assumptions of the unknown tiles of the
FM (167), or learning value functions that identify trap states or moves (that can cause suicides in the
game). Moreover, it would also be interesting to compare these planning SFP approaches to learning agents
submitted to the “Pommerman” competition (223; 224), or even investigate more hybrid methods for this
game. Lastly, a deeper analysis into the agent behaviour could help paint a clearer picture of their strengths
and weaknesses and better inform future developments (225; 226).

Tribes. Next, we discussed the “Tribes” environment, a multi-agent, multi-player, stochastic, partially
observable strategy game. It poses many challenges for AI players, including technology and resource
management, build orders, unit coordination, opponent modelling and long-term strategic planning, with a
large and variable, non-linear action space.

In the context of this thesis, we highlight the high performance of RHEA in this game, when faced
with several other players, including MCTS, Monte Carlo, One-Step Look Ahead and random. RHEA is
successful in beating all other players and achieves 74.84% overall win rate in all of its games. However,
this agent fails a test against human play and shows the need for higher-level planning for better unit
coordination and resource management. A surprising finding of the study was the strength of the simple
rule-based system, which ranks second out of all players tested, with a different strategy highlighted by end
of game measures of several game features. This indicates further analysis is needed to find methods able
to surpass the performance of this simple player.

Follow-up work to this study is focused around testing performance in the other game mode available,
as well as more of the tribes, more than 2 players, partial observability and other tweaks to the many game
parameters available in the “Tribes” framework. Adding other advanced AI game-playing methods would
also be straightforward, with those showing high performance in recent multi-agent games research being
targeted, such as Online Evolutionary Planning (76) and Evolutionary MCTS (81). Another line of future
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works looks at extending the framework to allow for easy integration of model-free reinforcement learning
or deep reinforcement learning techniques. The current visualisation of the game poses an excellent starting
point for integrating methods that use screen capture for decision-making. The framework also opens and
promotes work into procedural content generation, in particular creating levels with varied biomes that fit
the characteristics of a particular tribe and facilitate their growth in the environment - or, on the contrary,
pose interesting environmental challenges.

Tabletop Games. Lastly, we discussed the Tabletop Games (TAG) framework, which aims to promote
research into general Artificial Intelligence with features for easy implementation and bridge-building be-
tween tabletop games and artificial players, with some examples already included. We further analysed the
games in the framework, showing a wide variety of action spaces, information available to the AI agents,
duration etc., as well as tasks and challenges introduced. The AI player performance analysis shows Monte
Carlo Tree Search to dominate all other sample agents in the framework, with simple greedy methods being
surprisingly competitive in some of the games. Despite this, the RHEA agent does show high performance
in several of the games, suggesting promise for the application of evolutionary algorithms in tabletop games.
Overall, however, the problems proposed are far from being solved.

The framework opens up and facilitates many directions of research, and yet many more developments
are possible and planned. More measurements for both games and AI players can be added, to paint a more
complete picture of the challenges the players would face, as well as the current state of available methods
for such games: skill depth, overall state space size, stochasticity, size of search trees, player role asymmetry
- all would give a much more in-depth view of the framework as a whole, aiding in future developments of
both tabletop games and general AI players.

Further, we aim to facilitate interfacing external games with our framework in order to gain the full ben-
efits of the in-depth analysis and interaction with the implemented players without the need to re-implement
everything from scratch: this would open up the framework to many more already existing games, and also
increase the number and complexity of environments the AI players can be exposed to, improving their
quality as well.

Next chapter. In the next chapter, we take a look at novel research directions that expand upon the work
presented so far in this thesis: work which is at the fore-front of innovations in RHEA and which discusses
in-depth a variety of topics and potential further advancements, as well as showing preliminary results
obtained when applying the concepts in existing or key new environments.

142



Chapter 8

Further Research Pathways

In the end of this thesis, we look towards the future, and the exciting areas of research that can build on
top of the work presented so far. This chapter includes both visionary work describing paths for the future,
but also work already published extending from my work in interesting new directions - projects that I have
been a part of, but not a main contributor of.

8.1 Project Thyia: RHEA as AI Entity
The work in this section was published at IEEE CoG 2019:

R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Project Thyia: A Forever Gameplayer,” in IEEE
Conference on Games (COG), 2019, pp. 1–8.

The quest for artificial general intelligence (AGI) has been pursued for many years. Yet “no free lunch”
stands true to this day (149) and there exists no one method that is able to solve all problems. Some
researchers have been trying to model the human brain in order to give algorithms the power of learning that
humans have (227). Generally, humans are fairly good at learning how to perform a variety of tasks ranging
in difficulty, from using our body (walking, picking things up, dancing), to maths (counting, fractions,
solving equations), to producing creative works (writing, drawing, painting, designing games) and all in-
between. Not all of us are the best at all the different tasks, but most of us are fairly good at various tasks
within the same domain and at figuring out how new problems work given the knowledge base built over
our lifetime.

Although a lot of important advances in AI have been made in games, and games are still actively used
as testing environments for AI, algorithms are only able to solve (in this case, win or achieve a high score)
a subset of existing games (9). Planning and learning algorithms alike are unable to act in an intelligent
manner in all given games, unless they use human-tailored heuristics or features (often game-specific).
They do excel in some games, and different methods are better at different types of tasks. Here, we look at
it from the perspective of human intelligence: humans do not only learn, or do not only plan, when faced
with a new problem. They plan based on existing knowledge, execute the plan, and use the new experiences
to update their knowledge. We believe that combining planning and learning methods is key to AGI.

We do notice one drawback in game-playing AI research that is rarely addressed, to our knowledge.
The usual steps of running a game-playing AI algorithm are as follows:

1. Write / obtain algorithm.

2. Set up problem domain.

3. Press run.

4. Run ends with some result, maybe statistics.

5. Instance of AI no longer exists.

6. Rerun new instance of AI for new result.

Point 5 here is where our interest lies. Even in the case of learning algorithms, they run for a limited
number of steps or episodes, however long the researcher can afford to spend testing the method (in either
time or money). The algorithm may converge in the given time, therefore, even if given longer, it would
not do any better, but often it does not. If any bugs are found or thought to exist, the knowledge acquired
previously is scrapped and it all starts from zero again. The fact that the AI is able to learn to play well
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some games when starting from scratch is seen by many as a positive (228). Others give the AI a starting
point considered good, whether it is human knowledge or large amounts of existing data (229; 230). But
the knowledge stored in a trained model would not be reused in subsequent runs. Most planning methods
do not have memory, thus they start from scratch at every run of a game. As most algorithms are stochastic,
it is possible to store the random seed of a good run to reuse later on; we consider this to be a small attempt
at copying the AI instance, instead of preserving it.

A different scenario is presented by bots hosted on servers and interacting with humans, such as general
chat bots, Twitter or Slack bots (231). These bots are given mostly social intelligence, so that they can
respond to human requests, or maybe even initiate conversation (more rarely). We take from these the
concept of (almost) permanent existence in the cyberspace, as well as their ability to interact with humans.
Other examples of popular entities include Alexa, Siri, Cortana and other voice assistants (232), which
incorporate human speech understanding to be able to communicate with humans, be it to offer information
or a clever joke.

A similar example from the game AI domain is ANGELINA, the game designer (233). Unless Michael
Cook decides to take her down for updates or a break, she continuously and autonomously creates games,
improves them, names them, or throws them away if she decides they are unworthy. She also sometimes
interacts with humans, either through Twitter messages, streaming the design and test process on Twitch
or by simply sharing the games it creates1. In (233), Cook and Colton discuss the benefits of continuous
creative systems, highlighting long-term growth and development.

In this section, we present Eileithyia (or Thyia for short), the game player. Inspired not only by previous
research and internet trends, but also by Greek mythology. Eileithyia is the Greek Goddess of childbirth, or
life, as this would be a more interesting framing in this context. She is also the daughter of Hera, which may
seem an insignificant detail, but as an anagram of RHEA, we consider it a happy coincidence. Thus Thyia is
now Goddess of artificial life in a game-playing context, a system combining learning and planning. Thyia
would act in a similar way to ANGELINA: she exists in cyberspace (or, simply put, continuously running
on a server) and her purpose in her potentially endless life is to play games and become the best player
humans have seen. Thyia uses planning methods to play games, informed by the knowledge she gathers
over her lifetime, and learns from her experiences to improve her performance over time.

We highlight that Thyia would be the first step towards combining multiple areas of research and in-
creasing their presence and potential impact in the real world. We envision that game-playing agents would
be able to use the knowledge and experience gathered by Thyia to further improve their own performances
even in time-limited scenarios. Thyia is meant to showcase the true strength of modern techniques when
used together for long-term development.

We can summarise our contributions as follows. We propose a new way of thinking about game-playing
Artificial Intelligence as entities that exist in cyberspace. We introduce Project Thyia, which centres around
such an AI entity. We combine existing planning and learning methods to allow Thyia to not only plan
through games, but also learn from experiences and improve over time, by using knowledge acquired as
well as by tuning its large parameter space and structure. Finally, we discuss difficulties imposed by a
continuous game player.

We will first review related literature in Sections 8.1.1, 8.1.2, 8.1.3 and 8.1.4. The concepts behind
Project Thyia are described in Section 8.1.5 and Section 8.1.6 addresses ethical concerns related to the
project.

8.1.1 AI Entities
Creating artificial life that we, as humans, can interact with in meaningful ways is the topic of many books
and films, with ongoing research trying to make such concepts into the real world. We will explore some of
the advances in this area in this section, with a focus on interactive ‘always-on’ AI.

Perhaps a most commonly accessible form of interactive AI is chatter bots. They are generally AI
algorithms running continuously on a server, accepting some form of human input (i.e. text or speech) and
returning some output in response to the input received. Conversational bots (234) are largely based on
natural language processing and databases of appropriate responses which could be manually designed or
automatically extracted (235). An early program with such intent is Weizenbaum’s Eliza (236), a chatterbot
built to respond to certain keywords in order to facilitate communication between man and machine. This
concept is also used in the development of platform-specific bots, such as Twitter bots, which may post
various content on its intended platform with the aim of interacting with other users (231).

Some games adopt this concept and research on social, interactive characters in order to create more im-
mersive experiences for their players. A great example here is Emily Short’s game “Galatea” (237), which
focuses on interactive storytelling. Emily Short writes about NPC conversation systems (238), showcasing

1https://gamesbyangelina.itch.io
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different functionalities these can take. We are interested in the tutorial system most, although in our case
it would be reversed: the humans would be giving the AI hints, and not the other way around, as in Matt
Wigdahl’s “Aotearoa” (239) or Santiago Ontañon’s “SHRDLU” (240). These characters, although becom-
ing more and more impressive with the inclusion of memory, personality and adaptation to different players
and play styles, they do exist only within the game. Our vision wishes to take this concept further and bring
more presence into the real world to such characters.

Darius Kazemi, known as Tiny Subversions2, is an internet artist who creates interesting ‘continuous’
bots. One example is his “Random Shopper” project, which consists of an AI entity that buys a new random
item from Amazon every month, within a certain budget, and has it shipped to Kazemi’s home for a regular
surprise.

Zukowski and Carr recently used Deep Learning to create an AI entity which live-streams music it
generates on YouTube (241). The virtual band, Dadabots, creates death metal pieces with the aims of
showing that AI is able to capture interesting differences between various music genres.

Perhaps the most notable AI entity with a presence in the real world from the games domain is AN-
GELINA. Initially created as an automatic system for designing entire games, with a focus of exploring
the limits of a software’s creativity and novelty while creating interesting playable experiences (242; 243).
Cook and Colton describe in (233) the extension of their vision for autonomous continuous game creation,
with a highlight to the opportunities this methodology opens for long-term improvement. We base our
concepts largely on their ideas, extending further to a multi-faceted game-playing system.

8.1.2 Continual Learning
An interesting research area which addresses similar problems to our domain is that of continual learning
(also known as lifelong learning, or sequential learning), which focuses on long-term learning for continu-
ous development, often on a sequence of different tasks. One definition of this domain is the study of agents
capable of interacting with their environment (in our case, a game), with limited computational resources,
that is started once and run for a long time (once started, no more changes are allowed) with the aim of con-
tinuously improving at fulfilling its goals over a period of time (244). The main differences to our system
are the lack of changes allowed once it starts (we wish to allow for updates and changes in the modules part
of our system), as well as the lack of interaction with the wider world outside of the agent’s environment
(we wish our agent to not only be getting better at the games it plays, but also to have a presence in the real
world).

However, a lot of the concepts described in continual learning research can be applied in our case as
well. This section will review several recent works with relevant and interesting results and/or takeaways.

Parisi et al. (244) review several works in the area. They note that current approaches are still facing
several issues, including flexibility, robustness and scalability. Interestingly, most learning models rely on
large amounts of annotated data to function in supervised domains. We wish to emphasise our focus on
efficient learning and gathering of data for learning from our planning agent, as well as the modularity of
our proposed system which would allow for new games to be added in, which may not respect the same
assumptions of our current corpus of games. Thus flexibility and robustness are key aspects we consider,
with scalability to more complex game domains an interesting path for future developments.

Lopez et al. (245) address the problem of forgetting as well as knowledge transfer (backwards, to apply
new knowledge to previous tasks, and forwards, to use current knowledge to learn new tasks more effi-
ciently). They propose a Gradient Episodic Memory (GEM) model which shows good performance on
a range of MNIST (a large database of handwritten digits) and CIFAR-100 tasks (a set of classification
tasks). Later, Chaudhry et al. (246) improve upon this algorithm to focus its efforts on the average loss over
all previous tasks, resulting in similar performance to GEM, while being much more computationally and
memory efficient.

Aljundi et al. (247) introduce the concept of selfless continual learning, which refers to allowing for
future tasks to be added to the sequence of tasks being solved. This idea is essential to our system, which
we envision to be continuously learning over a continuously expanding set of games.

One example of applying continual learning methods to the games domain is the work by Schwarz et
al. (248), who propose an algorithm which compresses its memory after learning each new task so as to
preserve key concepts, both old and new. They test their method on the Atari suite and show it to be better
than other knowledge preservation methods like Elastic Weight Consolidation (EWC) (249) on several
games. These methods, as well as those in (245), (246) and others can be used to enhance our learning
component, although in this section we choose to focus on simpler Neural Network approaches.

As highlighted by Diaz et al. (250), most of the focus on continual learning is on memory retention,
shaping the knowledge acquired and selectively deciding what, when and how to expand the knowledge, so

2http://tinysubversions.com
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as to improve performance on new tasks without affecting previously learned ones. Diaz et al. suggest that
evaluation of these methods is also very important and propose using several metrics applied at intervals
during the learning process: accuracy, knowledge transfer, memory and computational efficiency. They
combine these into an overall weighted-sum score based on which they can rank various methods on the
iCIFAR-100 dataset. Farquhar et al. (251) approach this same problem of evaluating continual learning
methods, further stressing the importance of choosing the right metrics for evaluation. They suggest that
current metrics used have a bias towards methods which use previous models as priors for new learning
tasks, making these appear superior although a different choice of experimental design would alter rankings.
To this extent, the authors propose several principles that should be followed or acknowledged as missing
when evaluating continual learning algorithms, such as the usage of several (more than 2) tasks (251). We
consider these notes important for future evaluations of our system.

8.1.3 Learning while Planning

There has been increasing interest in the research community regarding the combination of learning and
planning methods. Each have their own strengths and weaknesses. Learning methods not only require
some form of game state feature extraction in order to be able to play games; but they also need significant
resources for training and they lack generalisation across different tasks (252). Planning methods have
proven to be very good at a variety of different tasks and they can work online, with no training, and
in real-time; but they do require a model of the game in order to simulate possible future scenarios, and
they struggle in sparse reward environments (19). One way forward is to draw upon the strengths of both
techniques in order to build a fast, effective and general algorithm.

There have been several advances in this direction in board games, where the approach is to use a
search algorithm (often Monte Carlo Tree Search) as an expert to generate gameplay data, and a learning
algorithm (often a Deep Neural Network) which uses the gameplay data to train and perform better than
either algorithm would individually. A prime example is AlphaGo (253), followed by AlphaGoZero (188)
and AlphaZero (228), all of which combine Monte Carlo Tree Search (which generates gameplay data) and
Neural Networks (which use the gameplay data to train policies and value estimates) to successfully beat
the state-of-the-art in the game Go (and Chess and Shogi in the case of the latest AlphaZero program).

Anthony et al. (254) split the task of playing the game of Hex into two areas: planning efficiently and
generalising the plans across different boards and opponents. They use tree search to plan, aided by a neural
network policy to guides the search, and Deep Learning to further generalise the plans. They pinpoint the
benefits of their approach and the great results of combining the two approaches, which mean the agent is
capable of winning against previous champions.

These ideas were further developed and applied to video games, which differ mainly through their real-
time aspect, as well as increased complexities of dynamic worlds: AI methods only have a limited time to
make decisions. In this section, we also focus on video games, although the concepts described could be
extended to any games or problems. Jiang et al. (255) apply a combination of Monte Carlo Tree Search
(MCTS) and Neural Networks to obtain a competitive “King of Glory” player, where the heuristic used by
MCTS to evaluate leaf nodes is improved incrementally based on the results returned.

Lowrey et al. (256) developed a framework based around the idea of combining planning and learning,
called POLO, which consists of several continuous control tasks, such as humanoid locomotion or hand
manipulation. Most interestingly, they suggest that this combination of methods brings several benefits
including reducing the planning horizon, while finding good solutions beyond the local space currently
being explored.

A particularly relevant recent work is a combination of Neural Networks (NN) and Rolling Horizon
Evolutionary Algorithms (RHEA) applied to a series of MuJoCo control tasks (157). Tong et al. apply the
idea used in AlphaGo works by replacing the MCTS with RHEA, and using NNs to generate policies and
state value estimations. The policies are used to initialise RHEA, while the state value estimations are used
in the fitness evaluations of plans generated by the evolutionary algorithm. The network is then updated
after the evolutionary process completes in order to improve value estimations and, implicitly, the policies
as well, so that the whole system learns to generate better plans over time. They suggest their method is
efficient in learning interesting behaviours. We adopt these ideas into the learning part of our system with
several extensions, as detailed in the next section.

8.1.4 Planning to Learn

With a different perspective, we consider active learning as a form of increasing the autonomy of our
system. Within pattern classification and language learning, active learning is used to describe cases where
the learning agent generates its own patterns to submit to an Oracle which then informs the learner of the
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class of pattern (257). Active learning algorithms can use this approach to formulate highly relevant queries
that may enable more sample-efficient learning.

Reinforcement learning (RL) agents are already in control of their own destiny within a game, since
what they experience depends on the actions they take. In particular, RL algorithms can use concepts such
as intrinsic motivation (which may be related to novelty search) to take an active approach to learning in
the absence of sufficient external reward signals. This has been used to good effect to boost performance
on games with sparse reward landscapes such as Montezuma’s revenge (258).

Beyond this, we envisage an even more active type of RL in at least two cases: setting in-game scenarios
in order to improve performance on a particular game, and deciding which games to play in order to max-
imise “personal” development. In the first case, and agent would reason about its current state of ignorance,
and set up scenarios to test various hypotheses. Any game that allows user-defined levels would support a
form of this, though the ideal would be to have a set of learning games with an active interference API (Ap-
plication Programming Interface), allowing for alterations of the game state mid-game in order to explore
specific consequences. This would enable a much more direct manipulation of the game state than could
be achieved by the normal process of taking actions within a game, in turn leading to more sample-efficient
learning of highly performing strategies.

In the second case, the agent would analyse its more general short-comings and select games with which
to hone its skills. As far as we are aware, neither approach has been tried within the field of AI and Games.

8.1.5 Proposed System: Thyia
Thyia is a large system comprised of several modules. The modularity aims to allow for different parts to
be maintained, improved, updated or rebooted independently, in order to avoid potential loss of data in the
larger system. See Figure 8.1 for an abstract representation of the system envisioned in this section.

Game Set Module

As we are targeting a planning agent which also learns over multiple runs, an essential part of the system
is the set of games. Multiple frameworks for general-purpose game-playing exist. One of the earliest
general game frameworks was Metagamer, which used a Game Description Language to define the rules
of chess-like games (i.e. Chess, Chinese Chess, Checkers, Draughts and Shogi) and automatically generate
variations for game players to attempt to beat (259). A similar project was developed by Jeff Mallett and
Mark Lefler, called Zillions of Games3. They expanded the range of games to general board games, using a
LISP-like language for game definition. The AI received a lot of information about the game: not only the
actions available, but also the board structure and the goals of the game. Humans could use the system to
not only create new games, but they could also choose to play their games against an AI using alpha-beta
pruning and transposition tables.

This idea evolved further into the General Game Playing competition (GGP) (190), which includes turn-
based deterministic board and puzzle games and offers the entire rule set to the agents in order for them
determine their strategy. The Arcade Learning Environment (ALE) (43) improves on this challenge with
their focus on real-time deterministic arcade games. ALE in particular has received much attention in the
last few years from AI researchers (260; 143; 258).

However, we choose to use the General Video Game AI framework (GVGAI) (261), which comprises
of a large (and increasing further on a yearly basis) set of games with different properties of interest, such
as partial observability, stochasticity and a variety of game mechanics and score systems (including dense
and sparse rewards). The method proposed in this could be used in any of the GVGAI games, as they all
use a common interface and no game-specific knowledge is embedded in our system - thus it presents an
emergent quality for generalisation across games. Additionally, GVGAI uses the Video Game Description
Language (VGDL) to define its games, which allows for easy creation of new games or variations of existing
ones, leading to a potentially infinite supply of games varying in features and complexity.

A possible line of work to increase the presence of this system would be an integration with a game
designer (e.g. ANGELINA (233)). It follows naturally that ANGELINA and Thyia could make an excellent
team, one creating games based on the results and feedback of the other which plays them.

Planning Module

The core part of the system will be the actual game player: the algorithm which is able to play unknown
games. We choose to base the game player on a planning method, due to their flexibility, adaptibility and
lack of training necessary, as well as high performance across multiple games (9). The downsides of these
methods are twofold: they do not usually learn between games (i.e. the performance of the method is likely

3http://www.zillions-of-games.com/ZOG.html
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Figure 8.1: Thyia system. Composed of 3 core modules: a game player (planning AI agent), a learner and
a game set. Additional modules include external communications with the “real world” for game sharing
and human interaction; and an optimisation module for tuning the game player and learner’s parameters.
Further enhancements include a knowledge base, detailed analytics and forward model learning. We include
a possible connection with a game designer, which would be providing games for the system to play.

to be the same the first and the hundredth time it plays a game, save for game or algorithm stochasticity)
and they require a game model to be able to simulate possible future states. The first issue is addressed
throughout this section; the second will be discussed further in the Chapter conclusions.

Although Monte Carlo Tree Search is a commonly used in game-playing research (59), as well as some
commercial games (e.g. Creative Assembly’s “Total War: Rome II” (262)), recent work has shown Rolling
Horizon Evolutionary Algorithms (RHEA) to achieve a higher performance in many games (17), as well
as offering many customisation opportunities: the underlying Evolutionary Algorithm can ranged from a
1+1EA (133), compact GA (263), CMA-ES (157) and population-based GA (15). We choose to start with
RHEA for the planning module, but other methods such as MCTS could also be easily integrated.

Many RHEA hybrids can be created for interesting and diverse results (16; 17), while the idea behind
the algorithm remains the same: evolving sequences of actions at every game tick and evaluating each
sequence with the use of a game model, to simulate through the actions and assess the final state reached
by following the given actions. The value of this state, given by a heuristic, becomes the fitness of the
individual. At the end of the evolutionary process (when some budget has been reached), the first action of
the best individual is chosen to be played in the game.

In our implementation, RHEA includes over 30 parameters, allowing for not only operational settings to
be modified (i.e. individual length, mutation rate), but also the very structure of the algorithm (keeping the
population evolved from one game tick to the next with a shift buffer, including or excluding evolutionary
operators, adding Monte Carlo rollouts at the end of the individual when evaluating, etc.). These options
are all collected from past literature (15; 16; 17; 19) for a resulting EA with a parameter search space size
of 1.741E12.

The internal state of the planning agent can be fully represented by the random seed and its parameter
settings (i.e. given parameters and random seed, the exact same behaviour would be achieved in multiple
runs of the algorithm). Therefore, in order to preserve the internal state of the planning module, we need to
store its parameter settings and random seed. In the case of updates being required, we would then be able
to pause the system, disconnect the planning module, perform any updates and hook it back in with access
to its previous parameters and seed. In order to avoid complications with changes in parameter space, the
parameter space itself is built separately and modularily, so as new parameters may be added in without
impacting any other part of the system.
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Learning Module

Given the success of several works of combining planning methods with Neural Networks (NN), the learn-
ing part of our system would also take the form of a NN. However, there are two main aspects to consider
here: the state representation and the network architecture. In GVGAI, the typical state representations
used are: grid observations (NxM matrix with each cell representing one or multiple sprites at that loca-
tion) (264; 265; 266) or compressed feature vectors extracted automatically from an image representation
of the state with an Object Embedding Network (267). Various learning methods are used with different
architectures, such as: Value Iteration Networks (266), Q-Learning (267) and Deep Reinforcement Learn-
ing (265; 268). We propose using an architecture similar to that of the successful AlphaGo (188), although
the increased game complexity should be taken into account.

Due to the aims of general game playing, a limitation to consider is differences in games which make
it harder (if not impossible) to apply a model learned in one game to another. In the simplest case, the
agent would be told whether it is playing a different game, and learn different models per game. However,
in order for the system to be autonomous, not relying on human information, as well as learn efficiently,
another key aspect to consider for the learning module is transfer learning or extraction of key concepts
which are generally applicable across games (i.e. walking into walls is generally not allowed) similar to the
work of Narasimhan et al. in (266), for example.

To describe the internal state of the NN, we would need to save the generated model in order to be able
to rerun the exact same instance of the algorithm.

Combining planning and learning. There are various ways in which we can combine the planning
and learning approaches. Our proposed method extends from the AlphaGoZero (228) and p-RHEA (157)
approaches in literature, as detailed below.

• Initialisation: We replace the uniform distribution used in the random population initialisation with
external distributions provided by the NN. Starting from the current game state St, we query the NN
for the action distribution πt. This policy is followed using the Softmax function and the next state is
simulated according to the action at selected from πt, giving us St+1. The same process is repeated
until we generate a full action sequence of the desired length for use within RHEA. We then generate
the rest of the individuals in the initial population as mutations of the first.

• Mutation: We replace the uniform distribution used in selecting a new value for a gene g being mu-
tated with an external distribution provided by the NN. Given the game state obtained by simulating
through the sequence in the individual gene g belongs to, up until (and including) gene g, noted as
Sg , the NN return the action distribution πg . We modify πg to set the weight of the current value
of gene g to 0, and we perform weighted sampling from this distribution to obtain the new value for
gene g (guaranteed different from previous).

• Fitness: We include in the individual fitness the external state value vt provided by the NN, weighted
by α (see Equation 8.1, where Rvalue is the rollout value obtained by RHEA individual evaluation
and Nvalue is the NN value output for the final state reached through the rollout).

f = (1− α)×Rvalue + α×Nvalue (8.1)

Optimisation Module

A different line of work in improving the performance of game players (as opposed to relying on learning)
is the optimisation of their parameters. Given the large parameter search spaces for both the RHEA and NN
components of our system, it is highly unlikely that a human user would be able to select the perfect combi-
nation of parameters which would result in the highest performance, or most efficient learning. Therefore,
we add an optimisation module to Thyia. Although several optimisation methods have been explored in
literature and any could be integrated with our system, we choose to focus on the N-Tuple Bandit Evolu-
tionary Algorithm (NTBEA) (31), which has been shown to perform well and robustly on various problems,
in tuning game parameters (160) as well as game player parameters (133; 34; 161).

NTBEA is a model-based optimiser based on an Evolutionary Algorithm, which uses bandit-based
sampling and detailed statistics on combinations of parameters in order to optimise hyper-parameters. It
highlights fast convergence in noisy optimisation problems even with small computational budgets and it
scales well for large search spaces (34), although it has yet to be tested on a search space as large as Thyia’s.

The addition of this module does raise additional difficulties for the learning system: since the param-
eters of either the playing or learning algorithm would change, the data received by the learner could vary
significantly in terms of the game player’s behaviour. Therefore, the learner needs to be general enough to
not make any assumptions in the data it receives, in order to be able to cope with high variations.
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Human Interaction Module

Another important part of the vision for this system is the ability to interact with the “real world”. Ul-
timately, the goal of AGI is to bring benefits to humans in a multitude of real-world problems, thus the
humans must be brought into the loop. There are several ways in which this could be achieved.

Direct interaction. One of the clearest cases would be a direct communication between the user and
the AI, where the AI would use natural language processing to understand humans and reply to them
intelligently (or, in the simplest case, building a database of keywords which trigger certain responses from
the system). The purposes of this interaction form could vary from asking Thyia to play certain games, or
asking for its thoughts on games its played. This leads to further extensions of AI able to form opinions
supported by solid arguments or facts. Additionally, given its support for multi-player games, humans could
play alongside the AI for another form of direct interaction.

Knowledge and statistics display. Depending on the specific chosen representation for Thyia’s knowl-
edge, it may be hard to understand by humans: it could end up being an endless string of numbers which
would mean little to us without the capabilities of fast computation. Therefore, visualising statistics about
the games, the game player’s behaviour or the knowledge gathered would be interesting and useful to gain
a better understanding about the system’s inner-workings.

Live streaming. A common way for human game players to interact with others is through live-streams
(e.g. via popular platforms like Twitch and YouTube) and video sharing. There is a large community
which revolves around the concept of sharing gameplay with others that watch and comment on the game
being played, suggest strategies for the game or offer helpful information. In a similar way, Thyia could
be streaming the games it plays to enter this community of human game players, while opening a direct
communication channel through which it could even receive direct feedback for knowledge enhancement.
Being part of the human society is a widely studied interesting challenge (269). Human streamers mainly
attract audiences through their personality, thus attention should be given to Thyia’s audience interactions.
Further studies will look more into how human streamers interact with their audience, to enhance Thyia’s
abilities in this area (e.g. what information to present, what conversation it could be involved in etc.).

There is an important factor to take into account: the internet troll phenomenon. On the internet, many
humans are generally inclined to give purposefully misleading information. When faced with an AI eager
to learn from what the internet has to offer, we speculate these humans to be even more eager to fool our
system. Therefore, content filtering, moderation and maintenance are necessary to ensure the system does
not fall into traps. These will be further discussed in Section 8.1.6.

8.1.6 Ethical Implications

A large limitation of the project is its possible ethical implications. The fact that Thyia would be open to
outside world interaction poses a problem. The ideal scenario is the interaction taking place in a controlled
environment where it would be ensured that the tasks the AI is given to solve are not ethically questionable.
However, as discussed at the end of Section 8.1.5, the internet is nowhere close to a controlled environment
and humans interacting with the system could be supplying various malicious information:

• Suggestions for unethical strategies (e.g. destroying the human race before running to the finish line).

• Unethical game proposals: the games sent to the system to play could contain harmful content, hate
speech or unethical themes such as killing a particular race.

• Malicious injections taking advantage of the natural language parser to generate unexpected and
harmful behaviour (e.g. teaching the agent to reply in a harmful way to the humans interacting with
the system).

There have already been cases of abuse towards interactive AI. A prime example is Tay, Microsoft’s
chatter bot which was given open communication via Twitter, with the result being the Twitter community
teaching the chatbot to become offensive and racist in only 16 hours (234). The benefit of such incidents is
that subsequent attempts at general-public interaction include safety precautions against malicious intent.
Moderation and content filtering are, therefore, very important to integrate within our human interaction
module. One form of filtering for textual and speech-based content is sentiment analysis (270), which we
would use to identify possibly harmful messages received by Thyia before she gets to process them and
react accordingly. However, even though research in the area of textual sentiment analysis is plentiful, it is
harder to apply the same tools for game content: how could one identify if a given game is unethical? We
suggest this as an interesting path for further work.
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8.2 Representation Types
The work in this section was published at IEEE CoG 2020:

D. Perez-Liebana, M. S. Alam, and R. D. Gaina, “Rolling Horizon NEAT for General Video Game
Playing,” in IEEE Conference on Games (CoG), 2020, pp. 375–382.

The work described in this thesis exclusively uses a single representation type for RHEA: an individual
is a sequence of actions to play in the game. This is the classic form first introduced in (7) and the most
direct interpretation for a game-playing agent, similar to the process in MCTS. However, this is not the only
phenotypical translation possible. Several options that could be considered are as follows:

1. Actions: the classic form, where individuals represent sequences of actions. Very granular level of
control, yet small mutations lead to large changes in actual agent behaviour in the game, especially
when mutations happen towards the beginning of the sequence.

2. High-level actions: also referred to as macro actions or macro-goals, the individual could represent
higher-level concepts (e.g. “kill enemy X” or “go to door”). This representation requires a low-level
control method in charge of achieving the chosen goal, which could be another RHEA using the
low-level action representation. This variant is more similar to human decision-making and could be
extended to several levels of granularity (e.g. first choose between type of action, then specific object
to target, then execute), while allowing for the larger problem to be split into smaller and more easily
achievable tasks. This option could show great progress in very complex games, such as almost half
of the GVGAI games which still remain at close to 0% win rate.

3. Paths: to address the second limitation of the actions representation, individual could represent paths
for the agent to take within the level, with mutations adding or removing positions from the planned
path (and connecting the remainders appropriately). Further, this concept could be abstracted to
consider paths within a game state tree, leading into the area of Genetic Programming and making
use of the vast research in that area to apply in this new domain.

4. Weights for heuristics: individuals could also encode weights for different functions, such as heuris-
tics, or parameters for a (simple, to avoid computational cost inflation) agent. This approach would
likely encounter the problem of working within continuous spaces, yet be more flexible in deciding
high-level behaviours that should be executed at a point in time.

5. Weights for a neural network: extending from the previous point and taking advantage of recent
popularity of neural networks for learning to play games, the weights used by the network could
be encoded as individuals in an evolutionary algorithm, using then the network to create action se-
quences, evaluate these as in the classic RHEA and use the resultant value as the fitness associated
to the weights tested. This option would lead to more complex and flexible decision-making, at a
similar computation cost to the classic actions representation.

6. Combination: lastly, we acknowledge that it could very well be that the ideal and best performing
method to be a combination of several representations. For example, half of the individual could
represent action sequences, while the other half could be weights for the heuristic function used to
evaluate the game state reached through the action sequence. These methods would benefit from high
adaptability and better control, with the potential drawback of needing more time to figure out good
solutions.

Exploring all of these options in-depth would require a significant amount of work. In the rest of this
section, we describe work that explores option 5 by combining RHEA with NeuroEvolution of Augmenting
Topologies (rhNEAT) (25): the algorithm now evolves weights for the neural network (NEAT), uses NEAT
to generate action sequences and evaluates these by rolling them out with the forward model and assessing
the game state reached with a heuristic function h; the value returned is used as the fitness of the individual
(or weight for the neural network) and the best NEAT configuration is chosen at the end of the decision-
making process to generate one action to play in the game. Different variations of the algorithm are explored
within the context of the same 20 GVGAI games.

NeuroEvolution (NE) is a field concerned with evolving the weights and configurations for a neural
network (NN), concepts which have been used extensively in games (271). Early work in the area looked
at evolving the toplogies of NNs (272). However, Stanley and Miikkulainen proposed evolving both the
weights and the topology of NNS through a direct encoding (a binary vector indicating if a connection
between 2 neurons exists or not). This has become one of the most popular systems: NeuroEvolution
of Augmented Topologies (NEAT) (273). This work was later extended for several domains, such as
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Figure 8.2: Two parents lined up for crossover according to their innovation numbers. Dark genes are
disjoint, while the dark cell with its innovation number underlined is excess.

robotics (274) or checkers (275). Yet more relevant to this study, NEAT has also seen several applica-
tions the general (video) game playing context. Reisenger et al. used NEAT to evolve a population of game
state heuristic functions in the General Game Playing competition with great success (276), allowing for
less human-designed domain knowledge embedded in the system, and more accurate opponent modelling.
Hausknecht et al. used NEAT in a similar way, to extract game objects from raw screen input and approxi-
mate their values based on the game score achieved (277; 278); using on-screen objects and their associated
value as the input to the evolved NN produces best action recommendations, the overall approach achieving
high performance on several Atari games. In GVGAI, Samothrakis et al. (279) test several combinations
of Separable Natural Evolution Strategies evolving function approximators and neural networks and show
their abilities of learning to play several games efficiently. These ideas are taken forward in integrating
NEAT within RHEA for online decision-making.

8.2.1 rhNEAT

NEAT starts with the simplest network (all input and output nodes, and an empty list of connections),
which becomes incrementally more complex through evolution, in order to find more efficient solutions to
the given problem. At each generation, it keeps a population of P individuals, which is sorted based on
individual fitness. It then uses tournament selection to choose parents and uses crossover, then mutation, to
obtain offspring. Each one is evaluated and a percentage R of the lowest-fitness individuals are discarded
for the next generation. The process repeats within the allocated budget and the action returned by the best
individual at the end of a game tick is played in the game.

A form of shift buffer is available for this algorithm as well, by keeping the previously evolved popu-
lation from one game tick to the next; in this section (as no shifting actually occurs and the population is
unchanged), we refer to this process as population carrying. All parameters of rhNEAT are described in
Table 8.1. The rest of this subsection details several key concepts, both for NEAT in general and the specific
implementation for playing GVGAI games.

Genome: each genome (individual) is made up of 2 lists: one list of node genes (input, hidden, and
output nodes), and one list of connections between the nodes (specifying in-node, out-node, weight, inno-
vation number and a boolean variable indicating if the connection is enabled or not). Crossover specifically
looks at the list of connection genes, adjusting the list of node genes as needed according to the result.

Innovation numbers: index of a connection gene, according to the step where it appeared in the
evolution process (280).

Crossover: the genes in the chosen parents are lined up according to their innovation numbers; genes
match if they have the same innovation number; if they do not match, but are within the range of the other
parent’s innovation numbers, they are labelled as disjoint; if they do not match and are outside of the range,
they are considered excess; see an example in Figure 8.2. Disjoint and excess genes are only taken from
the fitter parent (or from both if they are of equal fitness). The matching genes are either chosen uniformly
at random from either parent (uniform crossover), or both are kept and their weights are averaged (blended
crossover (281)).

Mutation: there are several mutation options possible, each chosen with some probability:

• Add connection (µt): adds a new connection gene to the list, between two existing nodes.

• Add node (µn): adds a new node gene C to the node gene list; the connection list is updated so
that the newly added node splits an already existing connection between nodes A and B into two,
with the new node C in the middle. The original connection (A −→ B) becomes disabled. The
new connections receive innovation numbers increased by 1 each from the current highest in the
algorithm and associated weights (A −→ C gets weight 1.0 and C −→ B gets the weight of the
original connection A −→ B).
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Figure 8.3: Summary of an individual evaluation.

• Connection weight shift (µws): adjusts the weight of a randomly chosen connection by a value picked
randomly in range [−Ws, Ws].

• Connection weight change (µwr): replaces the weight of a randomly chosen connection by a value
picked uniformly at random, in range [−Wr, Wr].

• Connection toggle (µtl): toggles the enabled/disabled property of a randomly chosen connection.

Speciation: individuals are grouped into species based on their topology complexity and they only
compete against other individuals in the same species. To separate individuals from a new generation into
species, first a representative from each species in the previous generation is chosen uniformly at random.
A distance function is then used to measure the distance of each other individual to each representative,
and they are clustered based on the smallest resultant difference. The distance function used is described
in Equation 8.2. In this equation, N is the total number of genes in both individuals (normalised to 1 if
less than 20), Excess is the number of excess genes, Disjoint is the number of disjoint genes, W is the
average weight difference between matching genes (273) and c1, c2 and c3 are constants which can be
tuned to change the impact of each variable in this linear combination. A maximum distance threshold CP
is used, and if an individual is not close enough to any species representative, then it forms a new species.

δ =
c1Excess

N
+
c2Disjoint

N
+ c3 ·W (8.2)

Small networks are generally faster to optimise and obtain good solutions quickly. However, the nature
of NEAT results in more and more complex networks. This can lead to newer generations seeing initially
lower fitness and a smaller chance of survival throughout generations if compared to the whole population,
thus the need for speciation arises. When a species loses all individuals from one generation to the next,
that species is removed from the algorithm.

NN Input: the input to each NN encoded in an individual is a series of game state features:

• Avatar x, y position, normalised in [0, 1].

• Avatar x, y orientation.

• Avatar health points, normalised in [0, 1], using 0 as minimum and Mhp as the maximum health
points achievable in each game.

• Up to three resource types r1, r2, r3 gathered by the avatar, where each ri is normalised in [0, 20].

• Distance d and orientation o to the closest instance of a sprite in all categories distinguished in GV-
GAI: NPCs, immovables, movables, resources, portals, sprites produced by the avatar. Distances are
normalised in [0, 1], using 0 as the minimum and Md as the maximum possible distance in a game
level. Orientation is normalised in [−1, 1], where 1 represents that the distance vector to the sprite is
aligned with the avatar’s orientation and −1 the opposite.
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Table 8.1: rhNEAT parameter values.

Parameter Name Value
P Population Size 10
L Rollout length 15
R Individuals discarded per generation 20%
CP Speciation Threshold 4
c1 Excess coefficient 1.0
c2 Disjoint coefficient 1.0
c3 Weight difference coefficient 1.0
µl Mutate Link Probability 0.5
µn Mutate Node Probability 0.3
µws Mutate Weight Shift Probability 0.5
Ws Weight Shift Strength 0.4
µwr Mutate Weight Random Probability 0.6
Wr Weight Random Strength 1.0
µtl Mutate Toggle Link Probability 0.05
FMb Forward Model calls budget 1000

We note that due to the different nature of GVGAI games, not all include all of the features described
here (e.g. health points, resources or sprites in specific categories are only used in some games). In these
cases, those inputs are not included for the network, to reduce its size and encourage faster optimisation. If
some of these features appear later on in the game and the population carrying is enabled in the algorithm,
then the population is reinitialised for the game tick.

NN Output: distribution over actions available in the game.
Evaluation: to evaluate an individual, the NN it encodes is constructed and used to roll the current

game state forward for L steps. At each step, input features are extracted from the game state, fed into
the network and the action with the highest probability is extracted from the output. This action is applied
in the state using the forward model, obtaining a new game state to repeat the process in (see Figure 8.3).
The heuristic function h in Equation 8.3 can be used to evaluate any of the game states traversed during the
rollout, and these values combined to obtain the fitness of the individual. Several configurations are tested
in the experiments presented here.

h(s) =


106 win
−106 lose
game score otherwise

(8.3)

8.2.2 Experiments
For the experiments, each algorithm configuration is run 100 times on each of the 20 games, 20 repetitions
for each of the 5 levels. The budget given is 1000 FM calls and each configuration uses a population size
of 10 individuals and a rollout length of 15. The rest of the parameters are set as in Table 8.1.

The configurations tested include enabling/disabling speciation and population carrying and different
options for fitness calculations. Finally, the best overall rhNEAT agent is compared to RHEA and MCTS.
All code and results are available on Github4.

rhNEAT Additions

The first set of experiments looks at how different enhancements (speciation and population carrying) affects
the performance of the algorithm, compared with its vanilla version (referred to as baseline rhNEAT). The
variant using population carrying is referred to as rhNEAT(+cp), and rhNEAT(+sp) is the variant using
speciation. rhNEAT(+sp,+cp) combines both enhancements. All algorithms in these experiments use only
the value of the final game state reached at the end of a rollout as the fitness of individuals (the default in
RHEA).

The first row group in Table 8.2 shows an increase in both win rate and score as more enhancements are
added, with a higher increase for population carrying compared to the baseline. This suggests that keeping
the population evolved between game ticks is very important, to make the most efficient use of the short time

4https://github.com/GAIGResearch/rhNEAT/
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Table 8.2: Summary of results showing, for each approach, average win rate (and standard error) in the 20
games, the number of games it achieved the highest positive win rate in the subset (including the absolute
highest count, i.e. no ties), and the number of games in which it achieved the highest score.

Algorithm Win Rate (Std Err) Highest positive win rates (absolute) Highest score
A

dd
iti

on
s baseline rhNEAT 15.54% (6.13) 0 (0) 0

rhNEAT(+sp) 22.69% (7.01) 2 (1) 2
rhNEAT(+cp) 30.45% (7.93) 2 (2) 6

rhNEAT(+sp,+cp) 36.50% (8.52) 13 (12) 12

Fi
t.C

. rhNEAT 36.50% (8.52) 8 (6) 12
rhNEAT-acc 35.15% (8.12) 9 (7) 5

rhNEAT-accdisc 34.20% (8.14) 3 (2) 4

Fi
t.A

. rhNEAT 36.50% (8.52) 10 (8) 11
rhNEAT-lr 35.25% (8.72) 5 (4) 3

rhNEAT-avg 31.55% (8.10) 5 (2) 6

SF
P

rhNEAT 36.50% (8.52) 3 (2) 1
RHEA 44.80% (8.89) 2 (0) 0
MCTS 42.65% (9.56) 6 (3) 4
SotA 51.21% (8.72) 13 (10) 16

Figure 8.4: Win rates per game of different rhNEAT variants: baseline rhNEAT, with population carrying
(+cp), speciation (+sp) and with both (+cp,+sp).

given for decision-making - especially as, with this representation, the population remains highly relevant
throughout the game and the networks evolved keep getting better over time. We do note that resetting the
population is important if the features present in the game change, or the game state changes drastically
(e.g. as in complex games, where multiple levels with different mechanics could be combined into one play
session). We see the baseline method performing quite poorly, at 15.54% win rate, but both enhancements
added results in a boost in performance to 36.5%, obtaining the highest win rate in 13 out of 20 games and
the highest score in 12.

In Figure 8.4 we detail the results per game for all configurations tested here. We can see again that
rhNEAT(+sp,+cp) achieves the highest win rate in most cases. However, it is worth highlighting that
performance varies largely between the different games, with some seeing win rates of or close to 100%
(“Infection”, “Aliens”, “Butterflies”, “Intersection”), while others remain at 0% (“Dig Dug”, “Lemmings”,
“Roguelike”). Another interesting game to showcase is “Plaque Attack”, in which speciation is actually
highly detrimental to the agent’s performance, its win rate (as well as that of the baseline algorithm) being
close to 0%; however, adding population carrying raises the win rate to almost 90%. We see this as a
clear example of different parameters being beneficial in different games, and optimisation similar to that
presented in Chapter 6 could be employed here as well to automatically find good settings for the variety of
games.

155



Figure 8.5: Win rates per game of different rhNEAT variants: calculating the fitness as the value of the last
state reached through the rollout (rhNEAT), as the sum of the values of all states visited (-acc) or as the
discounted sum of the values of all states visited (-accdisc).

rhNEAT Fitness Calculation

Next, we take a look at how the fitness is calculated during the evaluation process of one individual. Here,
rhNeat uses only the value of the last state reached at the end of the rollout; rhNEAT-acc uses a sum of the
values of all game states visited during the rollout. rhNEAT-accdisc uses a discounted sum of the values of
all game states visited during the rollout, with discount factor γ = 0.9, meant to differentiate between short
and long sighted versions of the algorithm. All variants tested here use the best option from the previous
set of experiments, rhNEAT(+cp,+sp).

Results in the second row group in Table 8.2 show very similar performance between all variations here,
with rhNEAT achieving the best win rate and score. However, performance is not affected significantly by
whether only the final state is considered, or all in-between. Figure 8.5 presents again a detailed comparison
on each of the games. Here we observe rhNEAT-accdisc to achieve worse results on most games, except for
“Camel Race” and “Butterflies”. These are fairly sparse games with rewards for the agent scattered across
larger levels, where a discounted sum of rewards gives better focus to the agent and allows it to explore the
space more efficiently.

rhNEAT Fitness Assignment

Lastly, we look at how the fitness calculated (kept as the value of the final state reached from the previous
experiment) should be assigned to an individual, based on the assumption that the same individual is going
to be evaluated multiple times throughout the course of a game. rhNEAT replaces the old fitness value of an
individual with a new one. rhNEAT-avg assigns the arithmetic average of all rewards seen by the individual,
to consider all of its past experiences. rhNEAT-lr uses a learning rate (α = 0.2) to adjust the individual’s
fitness with the new value obtained, as F = F +α× (fi −F ) (where fi is the new fitness and F is the old
fitness), in order to consider all past experiences, but give more weight to more recent ones.

The third row group in Table 8.2 shows a very similar performance between rhNEAT and rhNEAT-lr,
with rhNEAT being slightly better. However, considering all past experiences equally (rhNEAT-avg) leads
to a drop in performance to 31.55% win rate; this suggests that games do differ in various game ticks,
enough that it is often most beneficial to only consider the most recent evaluations when choosing be-
tween individuals. Further, these results highlight the baseline algorithm’s ability to adapt well to changing
scenarios within a single play session.

In Figure 8.6 we observe the split of win rates per game for this set of experiments. Here it is interesting
to note that rhNEAT-lr does outperform the baseline in “Survive Zombies” and “Seaquest”, games with very
dynamic, stochastic and busy environments, in which using the learning rate to slowly adjust the individual
fitness is a more robust approach.

SFP Comparison

Lastly, we discuss how rhNEAT compares in the larger GVGP context. To this extent, we show its perfor-
mance against RHEA and MCTS; both RHEA and MCTS use the same population size, individual/rollout
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Figure 8.6: Win rates per game of different rhNEAT variants: individual fitness assigned as the last evalua-
tion only (rhNEAT), averaged for all evaluations (-avg) or adjusted with a learning rate (-lr).

Figure 8.7: Win rates per game for rhNEAT, MCTS, RHEA and RHEA state-of-the-art (SotA).

length, budget and state evaluation as described in this section for rhNEAT for a fair comparison (all other
parameters not specified are default as described previously in this thesis in Chapter 3 and Section 2.2,
respectively). We further add into the comparison state-of-the-art (SotA) results, as described in (21).

The last row group in Table 8.2 show rhNEAT to achieve an overall lower win rate than the other
algorithms, although it outperforms them in 2 out of the 20 games. Taking a closer look at the division
per game, in Figure 8.7 shows these games to be “Crossfire” and “Camel Race”, in which most algorithms
which do not use custom heuristics better informing them of which actions are favourable do not perform
very well. Both games also feature sparse rewards and thus posing an extra challenge to general game
players (19), making the performance achieved by rhNEAT noteworthy.

157



8.3 Physics-Based Games

The work in this section was published at IEEE CIG 2017:
D. Perez-Liebana, M. Stephenson, R. D. Gaina, J. Renz, and S. M. Lucas, “Introducing Real World

Physics and Macro-Actions to General Video Game AI,” in Proceedings of IEEE Conference on
Computational Intelligence and Games, Aug 2017, pp. 248–255.

The work presented in this chapter so far focuses on fairly simple, arcade-style 2D grid-based games,
as has been the focus of the General Video Game AI framework. Although the games (and the subset
used predominantly throughout this thesis) include many different features (different reward systems, win
conditions, mechanics etc.) and genres (puzzles, shooters, navigation etc.).

This section expands the domain we are concerned with to games using physics simulations to cover
a wider range of mechanics available, as well as increasing the challenge for the AI players: previously,
when applying an action, the agents would see (in most cases) an immediate effect, e.g. moving one tile
to the left. In games affected by physics, this is much more granular: a movement to the left could mean
rotating a sprite only 1 pixel, depending on the force applied and any other forces acting on the object at
the same time, for example (or even moving the sprite downwards instead due to gravity!). To put this idea
in perspective, the grid-based implementation of “Aliens” sees sprites moving consistently based on their
speed (even if this is below 1, so moving less than a tile at a time and giving the impression of more precise
movement, this never varies); in a physics-based implementation, the distance moved would depend on the
state of the sprite and the environment, i.e. what other forces are acting on the sprite, its current speed,
acceleration etc. The level space that the agents have to explore is therefore much larger in these games.
However, these games also offer a more realistic simulation of real-life scenarios (282), allowing games
research to be more impactful across several other areas, such as robotics and engineering.

The first part of this section will describe additions made to the General Video Game AI framework
to support such complex games and the specific game set explored in the experiments, which are the first
10 physics-based games implemented with the new engine. These will be referred to as Continuous or
Real-World physics-based games, in contrast with the games implemented in the 2D grid system.

The second part of this section will detail experiments testing Rolling Horizon Evolutionary Algorithms
on the new set of games and comparing its performance to Monte Carlo Tree Search. Both agents receive
the same enhancement to be able to handle the larger search space better, a repeat frame-skip (where each
chosen action is repeated several times). The effect of different lookahead lengths is also tested and analysed
in the context of the budget - information gain trade-off.

This type of frame-skip in physics-based games is meant to, in a way, discretise and reduce the search
space for the agents, relying on an approximation that an action repeated N times in continuous physics
would produce a similar result to the action executed once in grid-based physics. This also increases the
lookahead of the agents, as they would now executeN times as many actions in their simulations to account
for each one being repeated. Additionally, it also artificially inflates the agent’s thinking time: since an
actions is repeated N times after it is chosen (from time tick t to t + N ), the agent will only need to
return a new action to play every N game ticks (at game tick t + N + 1). This means that the agent has
N game ticks to decide the action it is going to take next, and N times as big a budget to do so. This is
not a straightforward benefit, as the game state could change unpredictably (in stochastic games) between
2 decision points; yet we explore if the approximations obtained and the longer decision-making time is
enough to make up for the potential inaccuracies. This turned out to be the case in previous research, where
RHEA saw a large boost in performance in the Physical Travelling Salesman Problem (7).

8.3.1 Real-World Physics Games in GVGAI

The GVGAI framework was enhanced for this work (with modifications publicly available in the open-
source engine), allowing for further customisation in the game description files. Sprites can be assigned
to use the new continuous physics and specify 3 new properties as a result: mass, friction and gravity.
Typically, the gravity property will be the same across all sprites in a game (indicating the gravity force
affecting them, which one would expect to be the same), but it can differ between sprites for interesting
effects and gameplay.

Several forces are therefore defined to act on each sprite at any one time, and their movement is calcu-
lated accordingly, instead of being restricted to the previous 4 directions (up, down, left, right). Each sprite
has instead a direction unit vector (set in screen pixels) and a speed, making movement and trajectories
more flexible and natural. The resultant velocity vector is combined with any other forces acting on the
sprite, and then used to update the sprite’s position at every game tick. Inertia naturally arises due to the
addition of forces, factored by the object’s mass and friction.
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Table 8.3: Physics game set including feature analysis. Symbols as used previously in Section 2.1.2. Ac-
tions key: Rot = rotate; Move = move; LR = left and right; UD = up and down; Shoot = create a missile
sprite with the same direction as the avatar and a particular speed; AD = accelerate and decelerate; Jump =
add force in up direction.

Idx Game Stoch. Rewards Win Lose Levels NPCs Res. Actions
0 Artillery D Kill Death M/Dense E Rot:LR+Shoot
1 Asteroids D Kill Death M/Sparse Rot:LR+AD+Shoot
2 Bird D Exit Death L/Sparse Jump
3 Bubble D Kill Death M/Sparse E Move:LR+Shoot
4 Candy D Exit Death M/Dense E Move:LR+Jump+Shoot
5 Lander N Exit Death M/Sparse Rot:LR+AD
6 Mario D Exit Death L/Dense E Move:LR+Jump
7 Pong N Kill Kill M/Sparse Move:UD
8 PTSP x N Kill Death L/Dense E Move:UDLR
9 Racing D Kill Death L/Sparse Rot:LR

Several new avatar types and new interactions can be defined as well, setting the possible actions for the
player and the resulting forces they would create on the object they control. We refer the reader to (26) for
full details on the new framework modifications.

Table 8.3 presents a summary of the features of the physics games tested in the experiments described
here. Most of the games are deterministic (except “PTSP”) and include dense rewards, with a variety of
actions available to the player and different types of interactions. Full descriptions of the games can be
found in Appendix C.

8.3.2 Experiments
An extensive experimental work has been put in place to study the performance of the algorithm in the
games detailed in Table 8.3.

These algorithms are MCTS and RHEA, although a deeper study has been performed in the latter case,
varying the size of the population for the EA. The population sizes P tried are 1, 5 and 10, and results are
reported for these agents as RHEA-1, RHEA-5 and RHEA-10, respectively.

Different lookaheads have been explored for both RHEA and MCTS, aiming to explore how longer
rollouts affect the victory rates on these games. The lookahead values employed are 30, 60, 90 and 120
steps from the current game state. These lookahead values are reached by a combination of frame-skip
length M and simulation depth L (or individual length for the RHEA agents), with different configurations
for both values:

• L×M = 10; (L,M) = (10, 1).

• L×M = 30, with: (30, 1),5 (5, 6), (3, 10), (2, 15).

• L×M = 60, with: (60, 1), (6, 10), (4, 15), (2, 30).

• L×M = 90, with: (90, 1), (9, 10), (6, 15), (3, 30).

• L×M = 120, with: (120, 1), (12, 10), (8, 15), (4, 30).

For RHEA, we further test different population sizes P : 1, 5 and 10; results refer to these agent varia-
tions as RHEA-1, RHEA-5 and RHEA-10, respectively. Additionally, an extra configuration has been run
for all agents, where no frame-skip and a simulation depth of 10 has been used. This is a useful setting for
comparisons, as it is the default depth of the controllers as provided in the GVGAI framework.

Each one of these configurations is tested in 100 repetitions of each game: 20 repetitions of the 5 levels
in the 10 available games. A budget of 900 forward model calls is assigned for each game tick.

8.3.3 Results and Discussion
Overall Victory Rates

Table 8.4 shows the results with the default depth of 10 single actions. The last row of the table (average
victory rate over 100 games played, plus standard error between brackets) highlights that MCTS appears to
perform better than RHEA in this setting. However, higher population sizes help RHEA achieve a better

5Note that the first configuration per lookahead is equivalent to no frame-skip, but longer individual length / simulation depth.
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Table 8.4: Results of the controllers with their default L = 10.

Game RHEA-1 RHEA-5 RHEA-10 MCTS
Artillery 39.00 (4.88) 35.00 (4.77) 32.00 (4.66) 41.00 (4.92)
Asteroids 3.00 (1.71) 10.00 (3.00) 17.00 (3.76) 31.00 (4.62)

Bird 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Bubble 23.00 (4.21) 53.00 (4.99) 72.00 (4.49) 77.00 (4.21)
Candy 3.00 (1.71) 2.00 (1.40) 2.00 (1.40) 4.00 (1.96)
Lander 0.00 (0.00) 2.00 (1.40) 3.00 (1.71) 8.00 (2.71)
Mario 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Pong 69.00 (4.62) 68.00 (4.66) 63.00 (4.83) 67.00 (4.70)
PTSP 1.00 (0.99) 4.00 (1.96) 3.00 (1.71) 4.00 (1.96)

Racing 30.00 (4.58) 52.00 (5.00) 55.00 (4.97) 66.00 (4.74)

Total 16.80 (2.27) 22.60 (2.72) 24.70 (2.75) 29.80 (2.98)

Table 8.5: Results for all algorithms and configurations. Indicated values are the average of victories across
all games, with the standard error between brackets. Results in bold mark the best performances for RHEA
and MCTS.

L ×M: 30× 1 5× 6 3× 10 2× 15
RHEA-1 14.50 (2.10) 21.80 (3.29) 19.60 (3.16) 14.60 (2.46)
RHEA-5 31.60 (3.12) 32.90 (4.18) 22.40 (3.51) 14.70 (2.62)

RHEA-10 36.50 (3.15) 28.80 (4.06) 20.40 (3.43) 14.10 (2.67)
MCTS 46.00 (3.02) 48.40 (4.28) 41.30 (3.72) 20.50 (2.74)

L ×M: 60× 1 6× 10 4× 15 2× 30
RHEA-1 14.10 (1.93) 22.70 (3.30) 19.10 (2.88) 11.80 (2.15)
RHEA-5 33.40 (3.05) 31.50 (4.08) 27.30 (3.74) 12.20 (2.42)

RHEA-10 39.50 (3.10) 24.90 (3.73) 23.00 (3.62) 10.00 (2.23)
MCTS 46.90 (3.01) 46.40 (4.40) 26.70 (2.60) 5.10 (1.45)

L ×M: 90× 1 9× 10 6× 15 3× 30
RHEA-1 12.00 (2.11) 19.40 (3.09) 17.70 (2.88) 14.00 (2.31)
RHEA-5 32.80 (3.06) 30.90 (4.04) 28.70 (3.76) 17.70 (2.74)

RHEA-10 37.30 (3.10) 25.70 (3.89) 24.60 (3.70) 13.70 (2.52)
MCTS 46.90 (3.08) 45.80 (4.56) 25.90 (3.28) 9.00 (1.82)

L ×M: 120× 1 12× 10 8× 15 4× 30
RHEA-1 14.10 (2.13) 20.50 (3.18) 17.10 (2.79) 12.80 (2.14)
RHEA-5 33.40 (3.07) 30.50 (3.92) 27.30 (3.64) 20.00 (2.74)

RHEA-10 36.00 (3.03) 25.10 (3.69) 24.20 (3.53) 15.90 (2.64)
MCTS 44.40 (3.14) 48.40 (4.55) 24.40 (3.15) 11.00 (2.15)

performance, very close to MCTS in P = 10. Furthermore, these results offer a glimpse into the wide
variety of challenges attacked through the game set presented here. Most of the games are dominated by
MCTS, although in some games the P = 10 version of RHEA achieves a similar performance. In some
games, such as “Bird”, “Lander”, “Mario” and “PTSP”, we observe a very low victory rate and even 0%
for all configurations.

Table 8.5 shows the results of all configurations averaged across games, for all the runs. The first
conclusion quickly observed is that the results with M = 1 are far better than their counterparts. This is
true for most cases, and, in fact, there is a regular trend that can be observed where victory rates drop as the
frame-skip length increases.

There are other interesting remarks to make about these results, especially compared to those presented
in Table 8.4. In general, it can be observed that RHEA usually sees a higher performance when small frame-
skip is added (second column of Table 8.5); however, improvement decreases as M gets higher, suggesting
this algorithm to need a more granular search in order to maximise its performance. Regarding the change
in population size for RHEA, it can be seen that performance typically increases when P is higher (which
was also noted in (15)), but only if the frame-skip length is short. Larger populations with more frame-
skip reduce the performance of the algorithm to its worst results in this comparison. This strengthens the
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Table 8.6: Results per game in the configuration L×M = 30. Averages and standard errors of the measures
indicated in bold when better than the other variants (italics where the best result is shared).

Algorithm: RHEA-1 RHEA-5
L ×M: 30× 1 6× 5 3× 10 2× 15 30× 1 6× 5 3× 10 2× 15

Artillery 34.00 (4.74) 12.00 (3.25) 3.00 (1.71) 3.00 (1.71) 52.00 (5.00) 11.00 (3.13) 3.00 (1.71) 6.00 (2.37)
Asteroids 0.00 (0.00) 3.00 (1.71) 2.00 (1.40) 0.00 (0.00) 36.00 (4.80) 19.00 (3.92) 0.00 (0.00) 0.00 (0.00)

Bird 0.00 (0.00) 22.00 (4.14) 30.00 (4.58) 15.00 (3.57) 0.00 (0.00) 45.00 (4.97) 22.00 (4.14) 13.00 (3.36)
Bubble 18.00 (3.84) 37.00 (4.83) 27.00 (4.44) 13.00 (3.36) 68.00 (4.66) 45.00 (4.97) 35.00 (4.77) 14.00 (3.47)
Candy 1.00 (0.99) 4.00 (1.96) 0.00 (0.00) 0.00 (0.00) 6.00 (2.37) 22.00 (4.14) 7.00 (2.55) 0.00 (0.00)
Lander 1.00 (0.99) 7.00 (2.55) 7.00 (2.55) 0.00 (0.00) 4.00 (1.96) 29.00 (4.54) 16.00 (3.67) 0.00 (0.00)
Mario 0.00 (0.00) 0.00 (0.00) 5.00 (2.18) 4.00 (1.96) 0.00 (0.00) 2.00 (1.40) 16.00 (3.67) 8.00 (2.71)
Pong 60.00 (4.90) 61.00 (4.88) 42.00 (4.94) 52.00 (5.00) 79.00 (4.07) 65.00 (4.77) 45.00 (4.97) 35.00 (4.77)
PTSP 1.00 (0.99) 36.00 (4.80) 42.00 (4.94) 35.00 (4.77) 13.00 (3.36) 50.00 (5.00) 48.00 (5.00) 42.00 (4.94)

Racing 30.00 (4.58) 36.00 (4.80) 38.00 (4.85) 24.00 (4.27) 58.00 (4.94) 41.00 (4.92) 32.00 (4.66) 29.00 (4.54)

Algorithm: RHEA-10 MCTS
L ×M: 30× 1 6× 5 3× 10 2× 15 30× 1 6× 5 3× 10 2× 15

Artillery 57.00 (4.95) 13.00 (3.36) 9.00 (2.86) 3.00 (1.71) 51.00 (5.00) 33.00 (4.70) 4.00 (1.96) 0.00 (0.00)
Asteroids 48.00 (5.00) 12.00 (3.25) 1.00 (0.99) 1.00 (0.99) 85.00 (3.57) 36.00 (4.80) 24.00 (4.27) 4.00 (1.96)

Bird 0.00 (0.00) 36.00 (4.80) 22.00 (4.14) 8.00 (2.71) 0.00 (0.00) 30.00 (4.58) 27.00 (4.44) 20.00 (4.00)
Bubble 79.00 (4.07) 28.00 (4.49) 17.00 (3.76) 12.00 (3.25) 97.00 (1.71) 50.00 (5.00) 87.00 (3.36) 38.00 (4.85)
Candy 6.00 (2.37) 17.00 (3.76) 5.00 (2.18) 1.00 (0.99) 9.00 (2.86) 56.00 (4.96) 8.00 (2.71) 1.00 (0.99)
Lander 10.00 (3.00) 17.00 (3.76) 9.00 (2.86) 0.00 (0.00) 49.00 (5.00) 58.00 (4.94) 35.00 (4.77) 0.00 (0.00)
Mario 0.00 (0.00) 8.00 (2.71) 9.00 (2.86) 8.00 (2.71) 0.00 (0.00) 18.00 (3.84) 14.00 (3.47) 1.00 (0.99)
Pong 80.00 (4.00) 69.00 (4.62) 52.00 (5.00) 35.00 (4.77) 80.00 (4.00) 100.00 (0.00) 94.00 (2.37) 62.00 (4.85)
PTSP 15.00 (3.57) 48.00 (5.00) 47.00 (4.99) 40.00 (4.90) 16.00 (3.67) 47.00 (4.99) 61.00 (4.88) 36.00 (4.80)

Racing 70.00 (4.58) 40.00 (4.90) 33.00 (4.70) 33.00 (4.70) 73.00 (4.44) 56.00 (4.96) 59.00 (4.92) 43.00 (4.95)

Figure 8.8: Victory rate (with standard error bars) in the game “Bird”, for all algorithms and configurations.

conclusion that finer control benefit this agent’s gameplay.
Similarly, MCTS also obtains the best overall results with small amounts of frame-skip, typicallyM = 1

and M = 10, and results get worse when M increases beyond that point. Next, we look deeper into each
particular game.

Game Victory Rates

When looking at the results per game from the experimental work described here, it is noticeable that there
is a strong dependency on the game in terms of algorithm, lookahead and the use of frame-skip. Table 8.6
shows the results for configuration L×M = 30 in all games separately. Similar trends can be observed in
most other games.

In many games, as expected after presenting the overall results, average victory rates are higher with
frame-skip M = 1 and M = 10. However, some games show a different behaviour. The most interesting
result is the performance shown in those games with very low win rates without frame-skip: “Bird”, “Lan-
der”, “Mario” and “PTSP”. In all of these games, the use of frame-skip somewhat increases the win rate
for some of the agents. In “Bird”, “Lander”, and “PTSP”, the use of frame-skip improves the performance
from very close to 0%, to values between 30% and 50% in different settings. These games include scenarios
where a longer lookahead may be beneficial, but not without a finer degree of control. A lookahead of 30
(rather than 10, as in the results of Table 8.4) does not guarantee an improvement in performance, but using
frame-skip to simultaneously reduce the search space does (e.g. RHEA-5 increasing to 45% of victories).
In fact, it is not surprising that “PTSP” is a game where frame-skip works well, it was particularly in that
game where the concept used here was originally introduced (283).

There is also a small performance increase observed in “Mario”, from 0% to less than 20%. A possible
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explanation why the performance gain is smaller here is that “Mario” requires longer planning in conjunc-
tion with fast reaction to avoid enemies and hazards in the levels. A deeper look into platformer games may
be required to tackle this type of games in a general context, which is also a new type of games added to
the GVGAI framework.

In the game “Bird” (see Figure 8.8), there is a clear difference between using distinct lookaheads. The
best performance is achieved when the lookahead is 90 and 120, with 60% victory rate, achieved by MCTS.
However, all RHEA approaches are better than MCTS with the shorter lookahead (L × M = 30), and
M = 1 shows practically no victories for all agents.

8.4 Conclusions
In this chapter we describe several works which open up novel research directions for RHEA, covering
several concepts and describing in-depth discussions of the topics as well as initial experimental results as
proof of concept.

Project Thyia. First, we presented our vision for Thyia, a large system comprised of several modules with
different focus and functionality. The core concept is based on the idea of an Artificial Intelligence entity
which continuously plays games, using planning to solve the problems imposed and learning to improve its
performance over time. The learning can be seen twofold: in terms of the knowledge of the system and its
ability to solve problems of diverse complexities and interact with dynamic environments; but also in terms
of adjusting its parameters and structure so as to evolve and adapt to the worlds it encounters. We also see
interaction with the real world as an aspect of key importance: an AI entity able to interact with humans in
meaningful ways (such as direct communication, knowledge exchange, experience sharing) is much more
interesting to study than algorithms which only exist in their constrained environments.

We described several limitations of the system throughout the section and we highlight that combin-
ing many different components is bound to raise several issues. Planning methods require models of the
game worlds to be able to simulate ahead and Rolling Horizon Evolutionary Algorithms, as well as Neural
Networks, offer great flexibility and customisation with the risk of manually tailored parameters may not
be the best choice. Hyper-parameter optimisation methods such as the N-Tuple Bandit Evolutionary Algo-
rithm can help find good combinations of parameters, yet the game-playing and learning methods need to
be able to cope with a change in parameters across the system and limit their assumptions. Lastly, human
interaction brings natural language processing complications and raises some ethical concerns that should
be taken into account when building a system such as Thyia.

There are many ways in which the concept of this system could be expanded even further. Knowledge
representation is an interesting aspect to consider: we might want the knowledge of our system to be
stored in a way such that it is more easily interpreted than a Neural Network. To this extent, Hierarchical
Knowledge Bases (284) seem like a natural addition.

Furthermore, in order for the system to be a truly general game player, it should be able to play games
even when a game model is not provided. Learning forward models in the general game-playing context is
an active area of research, with several impressive advances (285; 286; 287; 35). With the addition of such
a module, we speculate the system could even receive games from external sources (thus not adhering to
any accidental assumptions included in the building of the system) and learn how to play them.

An important aspect to be considered in future work is the evaluation of the system. Given its complexi-
ties and ‘always-on’ characteristics, evaluation would have to be done based on the system’s outputs to user
queries to analyse its current knowledge and skills. Given its lack of compatibility with traditional bench-
marks and evaluation systems, new benchmarks could be considered for continuous evaluation of complex
systems such as Thyia. Additionally, it would be interesting to explore the algorithm’s ability to produce
not only ‘intelligent’ game-play, but also meaningful, creative, fun or inspiring experiences for the players
it interacts with.

Lastly, we acknowledge analytics as an important possible addition. With AI systems becoming more
intelligent, but also large black boxes, it is important to be able to understand their thinking process that
leads to certain behaviours. Answering the question of why a decision was made would be arguably more
important than making the right decision. There have been several approaches taken to extract features from
a planning agent’s own experience while playing a game (20), as well as to visualise these features to give
a better insight into the agent’s decisions (18).

Representation types. Next, we discussed the topic of different representations within RHEA, with a
detailed study in one particular option: the rhNEAT algorithm combines RHEA and NeuroEvolution of
Augmented Topologies (NEAT) so as individuals encode neural networks, which receive game features
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as input and output an action to play in the game; the evolutionary process then evolves the weights and
topologies of these networks. The evaluation of such an individual keeps the rollout concept within the
algorithm, by using the network encoded in an individual to repeatedly generate actions given an input
state and advance the state with the game’s forward model, for several steps; the game state reached is then
evaluated with a heuristic function, the value becoming the fitness of the individual.

The experiments presented test out several configurations of the algorithm in 20 GVGAI games: pop-
ulation carrying and speciation enhancements are both observed to lead to a large boost in performance
(population carrying the most), especially when combined, from 15.54% win rate for the baseline method,
to 36.5%. This overall best performance of the algorithm is still lower than previously preferred meth-
ods (44.8% for RHEA and 42.65% for MCTS), but the research led into some interesting insights about
the inner-workings of this algorithm, which showcases widely different behaviours than the traditional SFP
methods. Given that research into this topic is in its early stages, it already shows great promise for carrying
out further investigation into different representation options in RHEA. This work opens up research into
more indirect representations, such as Compositional Pattern Producing Networks (CCPNs) or HyperNEAT.

Further, we highlight that there is vast literature on NEAT and the many modifications that can be
brought to the base algorithm (271); the entire setup presented here could be further improved for better
performance, as well as automatically optimised for the wide range of games in GVGAI. Looking at dif-
ferent options for population control (288) or at the use of convolutional layers to extract features from the
game screen could lead to breakthroughs as well.

Physics-based games. Lastly, we discussed the new type of physics-based games in the General Video
Game AI (GVGAI) Framework, which aim to diversify the challenges presented to the agents and cre-
ate more realistic simulations of real-world environments and situations. Elements such inertia, gravity
or friction are now part of the framework, as well as a set of new games making use of these properties.
We presented experiments with both RHEA and MCTS agents within this context, making use of the re-
peat frame-skip concept to aid in their decision-making in these now much larger level spaces. Different
lookaheads and frame-skip values were tested to analyse the benefit of various algorithm configurations.

One main conclusion drawn from the experiments described here is that RHEA and MCTS have dif-
ferent strong and weak points depending on the game, yet none dominates the other, as is typical in many
experimental settings in GVGAI. MCTS performs better on average in these games in the vanilla form, yet
the (limited) use of frame-skip boosts performance in both RHEA and MCTS. Too much frame-skip, and the
planning becomes very inaccurate and difficult to control for both algorithms. In 4 out of 10 games tested,
victories can only be achieved through the use of frame-skip, highlighting the benefit of this enhancement
in particularly difficult or sparse games, or those games with control systems (player actions / input effects
on the in-game object controlled) most different to grid-based games. Choosing the correct parameters for
the best performance depends on the game attacked, as finer or coarser control may be preferred in different
instances - a potential area to explore more through automatic optimisation.

Future work in this area is twofold: first, the frame-skip enhancement explored here could be better
analysed in grid-based games as well. Although generally those are smaller games where repeated actions
might not be beneficial, the increased thinking time could help agents make more informed decisions in
sparse reward environments in particular. A better exploration of the variety of options for the type of
frame-skip (as discussed in Section 3.2.4) could also advantage agents in both grid-based and physics-based
games, including combinations of the different types or dynamic adjustments similar to those explored in
Section 5.2.

Second, the unique properties of physics-based games could be further analysed and agents developed
to take advantage of these and develop their decision-making process accordingly. The games themselves
could be further diversified (Table 8.3 shows that only a subset of the different types of features are present
in these types of games so far), as well as the physics engine itself improved to handle more complex
interactions between sprites accurately and realistically. Looking at the application of these algorithms in
completely new types of games, such as (289) could lead to exciting new insights. Continuous action input
from agents could also be supported in this type of games, which would add a new layer of challenge and
open a whole different area of research which has not yet been approached in GVGAI.
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Chapter 9

Thesis Conclusions

This thesis gives an overview of previous literature relevant to Rolling Horizon Evolutionary Algorithms
and their application in General Video Game Playing, as game-playing agents in single-player games. Vari-
ous topics were covered to include work carried out regarding benchmarking in a common setting of previ-
ously published approaches, analysis of base parameters (population size and individual length), the effects
of population seeding and hybridisation. Additionally, experiments are presented promoting in-depth anal-
ysis of the algorithms tested (visual and feature-based, used in performance-enhancing techniques or win
prediction) and automatic optimisation. Applications in diverse environments are reviewed, and the end of
the document begins a discussion of novel work carried out which opened opportunities for new research
directions to further study and apply Rolling Horizon Evolutionary Algorithms.

We make a note of the role randomness plays throughout this thesis. Random initialisation for RHEA
is the best choice in most environments tested; randomising some of the parameters online led to better
results in many games, even compared to more complex optimisation methods; environments with random
elements are often more complicated to tackle; and Random Search was shown to outperform the vanilla
versions of RHEA and MCTS in most of the environments. Often, the good performance obtained due to
randomness is due to the highly constrained experimental settings: real-time online decision-making does
not offer much leeway in employing complex time-intensive mechanisms, raising the need for not only
innovation in simple ideas, but also for implementation optimisation (e.g. the shift buffer, which is efficient
in preserving information as well as very fast to compute). It may well be that the solution to general video
game playing is a combination of offline and online decision-making process, with randomness playing a
big part in the success obtained.

The rest of this section summarises conclusions and the main takeaways through answers to the research
questions introduced in Chapter 1.

Research Question 1 What is a varied set of environments appropriate for testing general video game-
playing algorithms in?

Section 2.1.2 describes and analyses a subset of games from the General Video Game AI framework,
first introduced in (15). This game set combines a diverse set of challenges for artificial game players,
including various objects for the players to interact with in different ways, different mechanics and control
schemes, different winning and losing conditions and a variety of levels with different properties and gim-
micks associated. The difficulty of the challenges and the impact of a game’s stochasticity varies across
games as well, as highlighted later in the results. This set of games is further analysed in detail in term
of unique or challenging game features, which encourages more thorough future research in similar envi-
ronments, going beyond win/loss metrics and looking further into environment characteristics that lead to
interesting insights or particular behaviours. All games used in the thesis are described in the appendices
as well for easier comprehension of the true variety tested here. Most experiments presented in this thesis
(with few exceptions) use this main set of games and show varied performance across the environments,
with some games (e.g. “Aliens”, “Intersection”) often seeing win rates of 100%, while others (e.g. “Dig
Dug”, “Roguelike”) are at the opposite end of the spectrum at 0% wins. Although some methods do see
occasional wins on the latter problems mentioned (see Chapter 6), they generally remain too difficult for a
general approach to tackle efficiently.

We further test the application of the algorithm in specific environments in Chapter 7. First, we test
RHEA in “Pommerman”, a complex multi-player partially-observable game, with variations for competitive
or a mix of both competitive and cooperative play. We provide insights into the behaviour of the agent in
this environment, as well as analysing its performance in terms of win rate. MCTS generally outperforms
RHEA in several of the settings tested, through a safer approach than RHEA’s aggressive behaviour in this
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game. The work shows promise in the direct application of the algorithm in new environments and suggests
further optimisation of the algorithm could be greatly beneficial, as well as improving opponent modelling,
identifying trap moves and introducing assumptions for partial observability settings.

Next, we experiment with the application of RHEA in “Tribes”, a multi-player, multi-agent, stochastic
and partially observable strategy game. This environment is very complex and requires strategic play as well
as tactical decisions while managing an army, technology research, civilisation development and overall
economy. Results show that RHEA is able to achieve high performance in this game, yet it is still far from
human playing strength. Lastly, we look at tabletop games in the context of the Tabletop Games Framework
(TAG). Preliminary results show some moderate success for RHEA in competitive games, with MCTS
outperforming it in some of the games, both with plenty of room for improvement. None of the agents are
able to win in the cooperative game “Pandemic” in the generic form proposed, suggesting special focus
should be given to such complex and cooperative environments in future developments.

Research Question 2 What parameters can be extracted from a Rolling Horizon Evolutionary Algorithm,
and what modifications can be integrated into the algorithm for varied behaviour?

Chapter 3 formalises the Rolling Horizon Evolutionary Algorithm first introduced in (7), discussing
the many aspects the algorithm deals with, from the perspectives of evolutionary algorithms, as well as
general game playing. Many modifications and parameters are brought together, including those previously
explored in literature (e.g. shift buffer, Monte Carlo rollout-based evaluations of individuals), as well as
new ones (e.g. dynamic individual length adjustments, statistical trees built during evolution and used in
action recommendation). Values explored in follow-up studies are detailed, leading to a search space of
5.36× 108 total variations of the algorithm.

Research Question 3 What is the effect of adjusting the values of the parameters and combining modifi-
cations on the performance of the Rolling Horizon Evolutionary Algorithm?

Chapter 4 studies the various parameters and modifications in the algorithm are studied in a series of
experiments using the same common setting, in isolation (to perform a fair analysis of particular benefits
brought by individual enhancements), and in combination (to assess which parameters work well together,
or where there might be issues in synergy; both of these situations were identified in the experiments and
highlighted appropriately). We first carried out simple tests regarding the benefits of shorter or longer
lookaheads (individual length; for exploring more of the level space, at the expense of less iterations and
therefore less accurate information; or the opposite), and more or less sequences of actions evolved at a
time (population size; for exploring more of the search space, at the expense of less iterations and less
accurate information; or the opposite). We critically analyse different configurations for population size
and individual length in the set of 20 GVGAI games. Distinctions are made between deterministic and
stochastic games, and the implications of using superior time budgets are studied. Results show that there is
scope for the use of these techniques, which in some configurations outperform Monte Carlo Tree Search,
and also suggest that further research into these methods could further boost their performance.

Next, we proposed the use of population seeding to improve the performance of Rolling Horizon Evolu-
tion and present the results of two methods, One Step Look Ahead and Monte Carlo Tree Search, tested on
the 20 GVGAI games, in different population size and individual length configuration. An in-depth analy-
sis is carried out between the results of the seeding methods and the vanilla Rolling Horizon Evolutionary
Algorithm. In addition, we present a comparison to Monte Carlo Tree Search, with promising results: seed-
ing is able to boost performance significantly over baseline methods and even match the high level of play
obtained by the Monte Carlo Tree Search.

Lastly, we proposed a fair juxtaposition of four enhancements applied to different parts of the evolu-
tionary process: bandit-based mutation, a statistical tree for action selection, a shift buffer for population
management and additional Monte Carlo simulations at the end of an individual’s evaluation. These meth-
ods are studied individually, as well as their hybrids, on the 20 GVGAI games, and compared to the vanilla
version of the Rolling Horizon Evolutionary Algorithm, in addition to the dominating Monte Carlo Tree
Search. The results show that some of the enhancements are able to produce impressive results, while others
fall short. Interesting hybrids also emerge, encouraging further research into this problem.

Research Question 4 What insights can be gained from deeper analysis into the algorithm’s decision-
making process?
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Chapter 5 presents first VERTIGØ, a tool developed for the analysis and visualisation of Rolling Hori-
zon Evolutionary Algorithms, featuring an easy-to-use and complete graphical user interface, which allows
integration within the GVGAI framework. Users are able to select the game and level to run, customise the
parameters of the agent between runs and observe an in-depth analysis of its performance through various
visual information extracted from gameplay data, live while playing the game. All detailed data can also
be saved for further post-processing. This visualisation aims to inform a deeper analysis into algorithm
behaviour, in an attempt to justify its decisions improve its performance based on this knowledge.

This analysis is used to inform further studies on dynamically adjusting the individual length, according
to the density of rewards observed during the game (to prioritise exploration of the levels versus accurate
statistics at the correct moments in time). Modifications were proposed for two algorithms, Monte Carlo
Tree Search and Rolling Horizon Evolutionary Algorithms, aiming at improving performance in games with
sparse rewards, while maintaining high overall win rates across those games where rewards are plentiful.
Results show that longer rollouts and individual lengths, either fixed or responsive to changes in fitness
landscape features, lead to a boost of performance in sparse-reward games, without being detrimental to
non-sparse-reward scenarios.

All of the features extracted by VERTIGØare employed in a second study as well. We propose a general
agent performance prediction system, tested in real time within the context of the General Video Game AI
framework. It is solely based on agent features, therefore removing potential human bias produced by game-
based features observed in known games. Three different models can be queried while playing the game
to determine whether the agent will win or lose, based on the current game state: early, mid and late game
feature models. The models are trained on 80 games in the framework and tested on 20 new games, for
14 variations of 3 different methods. Results are positive, indicating that there is great scope for predicting
the outcome of any given game. This further suggests that changing the behaviour of the agent to promote
certain trends in its decision-making process could lead to a boost in performance, making tools such as
VERTIGØ key in not only better understanding the inner-workings of algorithms, but also in improving
them.

Research Question 5 How can the large parameter space of the Rolling Horizon Evolutionary Algorithm
be searched effectively for a good configuration of parameters?

Chapter 6 tackles the topic of automatic optimisation. Given the large set of parameters that resulted
after the experiments presented, which added more and more modifications to the algorithm, it becomes
infeasible to choose correct configurations manually in general, as well as for specific problems. Exper-
iments are presented exploring these concepts first offline, taking several days to learn good algorithm
configurations for each of the 20 GVGAI games tested. We use a parameter optimiser, the N-Tuple Bandit
Evolutionary Algorithm, to find the best combination of parameters in each of the 20 games. Further, we
analyse the algorithm’s parameters and some interesting combinations revealed through the optimisation
process. Lastly, we find new state-of-the-art solutions on several games by automatically exploring the
large parameter space of RHEA.

This work was later extended to work online instead, with the agent adjusting its parameters while
also searching for good action sequences during the game. We propose adapting online tuning methods
for Rolling Horizon Evolutionary Algorithms, and test the effect on the agent’s win rate. Online tuned
agents are able to achieve results comparable to the state-of-the-art, including first win rates in very difficult
problems, while employing a more general and highly adaptive approach. We additionally include further
insight into the algorithm itself, given by statistics gathered during the tuning process and highlight key
parameter choices.

We conclude that these approaches are not only efficient at finding parameter settings that work well
(and often, better) in many games, observing first win rates in extremely difficult problems, but they also
offer further insights into the algorithm’s parameter space, such as which values for parameters are prefer-
able, which values could be better explored in a better-tailored search space, or even highlight particular
synergies between parameters that cannot be easily identified through manual tuning or human intuition.

Research Question 6 What research directions into Rolling Horizon Evolutionary Algorithms are opened
up and encouraged by novel work?

Chapter 8 includes in-depth discussions of novel work which opens several exciting new research path-
ways. This refers to testing new representations within RHEA, new environments for the algorithm alto-
gether which better reflect real-world circumstances, as well as building a whole artificial entity framework
around the algorithm to allow it to interact with our world better, learn from human players and even
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share its experiences with other artificial entities, such as generative systems, for an exciting create-play-
feedback-improve creation loop.

We first introduce the vision behind a new project called Thyia, which focuses around creating a present,
continuous, ‘always-on’, interactive game-player. Next, we present first experiments combining Rolling
Horizon Evolutionary Algorithms with NeuroEvolution of Augmenting Topologies, where we evolve the
weights and connections of a neural network in real-time, planning several steps ahead before returning an
action to execute in the game. Different versions of the algorithm are explored in the 20 GVGAI games.
Although results are overall not better than other statistical forward planning methods, the algorithm better
adapts to changing game features and sets new state-of-the-art records in some very difficult problems, as
well as opening up research into new representations for RHEA.

Lastly, we discuss an extension of GVGAI supporting real-world physics. We then test a version of
RHEA and MCTS which discretise the now larger level space by repeating actions chosen several times
(and artificially inflating their thinking time as well), in 10 environments making use of the new physics
features. Results show that the simple action repetition enhancement helps the agents in some of the games,
although the performance of each variant is highly dependent on the game being played and win rates vary
widely.

Research Question 7 What is the new state-of-the-art in Rolling Horizon Evolutionary Algorithms, and
how does it compare to the previous state-of-the-art approaches based on Monte Carlo Tree Search?

Table 9.1: 20 GVGAI games state-of-the-art win rate. Games are indexed 0-19 in the following order:
“Dig Dug”, “Lemmings”, “Roguelike”, “Chopper”, “Crossfire”, “Chase”, “Camel Race”, “Escape”, “Hun-
gry Birds”, “Bait”, “Wait for Breakfast”, “Survive Zombies”, “Modality”, “Missile Command”, “Plaque
Attack”, “Seaquest”, “Infection”, “Aliens”, “Butterflies”, “Intersection”. Full game descriptions in Ap-
pendix A. MCTS column hows highest MCTS win rate, with the implementation described in Section 2.2.
RHEA column shows highest RHEA win rate, obtained with the configuration described by the rest of the
columns. P.Size = population size; I.Len = individual length; Offspring = offspring count; 1 elite for all
games; Init. = initialisation method; Selection = selection type; Crossover = crossover type; Mutation = mu-
tation type; Fit. = fitness assignment type; DD = dynamic depth; SB = shift buffer (discount in brackets);
MC = Monte Carlo rollouts (length and number of repetitions in brackets); Skip = frame skip (type in
brackets, optionally with number of frames skipped); Fit.Div = diversity in fitness (weight in bracket).

Parameters
Numerical NominalGame MCTS RHEA

P.Size I.Len Offspring Init. Selection Crossover Mutation Fit.
Enhancements

Source

0 0% (0.00) 0% (0.00) 10 15 10 RND Tourn. Uniform Uniform Last - (15)
1 0% (0.00) 4% (1.98) 10 15 10 RND Tourn. Uniform Uniform Last DD (19)
2 0% (0.00) 0% (0.00) 10 15 10 RND Tourn. Uniform Uniform Last - (15)
3 100% (0.00) 100% (0.00) 10 15 10 RND Tourn. Uniform Uniform Last - (15)
4 1% (0.99) 10% (3.00) 10 15 10 RND Tourn. Uniform Uniform Last - (15)
5 5% (2.18) 13% (3.39) 10 15 10 RND Tourn. Uniform Uniform Last - (15)
6 9% (2.86) 41% (4.92) 15 15 1 MCTS Tourn. Uniform Diversity Disc. SB(0.99); MC(1.0,5); Skip(Rep); Fit.Div(0.5) (21)
7 0% (0.00) 46% (4.98) 10 15 10 RND Tourn. Uniform Uniform Last MC(0.5,1) (17)
8 6% (2.37) 12% (3.25) 10 15 10 RND Tourn. Uniform Uniform Last SB(0.9); MC(0.5,10) (17)
9 10% (3.00) 20% (4.00) 10 15 10 RND Tourn. Uniform Uniform Last SB(0.9); MC(0.5,10) (17)
10 6% (2.37) 83% (3.76) 10 20 10 1SLA Tourn. 1-point - Disc. SB(0.99); MC(2.0,1); Skip(Null); DD (21)
11 45% (4.97) 56% (4.97) 20 15 10 RND Tourn. Uniform Uniform Disc. SB(0.99); MC(2.0,5); Skip(RND); DD (21)
12 25% (4.33) 38% (4.42) 10 15 10 RND Tourn. Uniform Uniform Last - (15)
13 69% (4.62) 86% (3.47) 15 20 15 RND Tourn. 1-point Softmax Max SB(0.9); MC(2.0,1) (21)
14 92% (2.71) 100% (0.00) 15 20 1 1SLA Rank 1-point Diversity Max SB(1.0); MC(2.0,1); Skip(RND); DD (21)
15 65% (4.77) 84% (3.66) 20 20 1 RND Rank Uniform - Average SB(0.9); MC(2.0,1) (21)
16 97% (1.71) 100% (0.00) 10 15 10 RND Tourn. Uniform Uniform Last - (15)
17 100% (0.00) 100% (0.00) 10 15 10 RND Tourn. Uniform Uniform Last - (15)
18 100% (0.00) 96% (1.92) 10 15 10 RND Tourn. Uniform Uniform Last - (15)
19 100% (0.00) 100% (0.00) 10 15 10 RND Tourn. Uniform Uniform Last - (15)

Table 9.2: “Pommerman” state-of-the-art win rate (FFA game mode; 200 games per vision range option
between MCTS, RHEA, one step look ahead and rule-based players; vision range is 2 for best RHEA result,
and 1 for best MCTS result), see Section 7.1 for details.

Parameters
Numerical NominalGame MCTS RHEA

P.Size I.Len Offspring Init. Selection Crossover Mutation Fit.
Enhancements

Source

0 68% (3.00) 21% (3.00) 1 12 1 RND - - Uniform Last SB(0.99) (11)
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Table 9.3: “Tribes” state-of-the-art win rate (averaged across 2500 two-player games from a round-robin
tournament between RHEA, MCTS, Monte Carlo search, rule-based, one step look ahead and random
players), see Section 7.2 for details.

Parameters
Numerical NominalGame MCTS RHEA

P.Size I.Len Offspring Init. Selection Crossover Mutation Fit.
Enhancements

Source

0 60% (1.40) 75% (1.25) 1 20 1 RND - - Uniform Last SB(0.99) (12)

Table 9.4: 5 GVGAI deceptive games state-of-the-art win rate. Games are indexed 0-4 in the follow-
ing order: “Decepti Coins”, “Flower”, “Invest”, “Sister Saviour”, “Wafer Thin Mints Exit”. Full game
descriptions in Appendix B.

Parameters
Numerical NominalGame MCTS RHEA

P.Size I.Len Offspring Init. Selection Crossover Mutation Fit.
Enhancements

Source

0 80% 55.56% 10 14 10 RND Tourn. Uniform Uniform Last MC(5;0,5); DD (19)
1 100% 100% 10 14 10 RND Tourn. Uniform Uniform Last MC(5;0,5); DD (19)
2 0% 0% 10 14 10 RND Tourn. Uniform Uniform Last MC(5;0,5); DD (19)
3 10% 8% 10 50 10 RND Tourn. Uniform Uniform Last MC(5;0,5) (19)
4 100% 100% 10 14 10 RND Tourn. Uniform Uniform Last MC(5;0,5); DD (19)

Table 9.5: 10 GVGAI physics-based games state-of-the-art win rate. Games are indexed 0-9 in the fol-
lowing order: “Artillery”, “Asteroids”, “Bird”, “Bubble”, “Candy”, “Lander”, “Mario”, “Pong”, “PTSP”,
“Racing”. Full game descriptions in Appendix C. MCTS column includes rollout length × frames skipped.

Parameters
Numerical NominalGame MCTS RHEA

P.Size I.Len Offspring Init. Selection Crossover Mutation Fit.
Enhancements

Source

0 51% (5.00) - 30 × 1 57% (4.95) 10 30 10 RND Tourn. Uniform Uniform Last - (26)
1 85% (3.57) - 30 × 1 48% (5.00) 10 30 10 RND Tourn. Uniform Uniform Last - (26)
2 30% (4.58) - 6 × 5 45% (4.97) 5 6 5 RND Tourn. Uniform Uniform Last Skip(Rep-5) (26)
3 97% (1.71) - 30 × 1 68% (4.66) 5 30 5 RND Tourn. Uniform Uniform Last - (26)
4 56% (4.96) - 6 × 5 22% (4.14) 5 6 5 RND Tourn. Uniform Uniform Last Skip(Rep-5) (26)
5 58% (4.94) - 6 × 5 29% (4.54) 5 6 5 RND Tourn. Uniform Uniform Last Skip(Rep-5) (26)
6 18% (3.84) - 6 × 5 16% (3.67) 5 3 5 RND Tourn. Uniform Uniform Last Skip(Rep-10) (26)
7 100% (0.00) - 6 × 5 80% (4.00) 10 30 10 RND Tourn. Uniform Uniform Last - (26)
8 61% (4.88) - 3 × 10 50% (5.00) 5 6 5 RND Tourn. Uniform Uniform Last Skip(Rep-5) (26)
9 73% (4.44) - 30 × 1 70% (4.58) 10 30 10 RND Tourn. Uniform Uniform Last - (26)

Table 9.6: 8 Tabletop Games state-of-the-art win rate (across 100 repetitions per four-player game, played
by RHEA, MCTS, one step look ahead and random players; “Tic-Tac-Toe” shows results for two-player
games from a round-robin tournament; “Pandemic” shows results for teams of the same player), see Sec-
tion 7.3 for details. Games are indexed 0-7 in the following order: “Tic-Tac-Toe”, “Dots & Boxes”, “Love
Letter”, “Uno”, “Virus!”, “Exploding Kittens”, “Colt Express”, “Pandemic”. RHEA mutation randomly
chooses one gene in the individual and mutates all subsequent genes.

Parameters
Numerical NominalGame MCTS RHEA

P.Size I.Len Offspring Init. Selection Crossover Mutation Fit.
Enhancements

Source

0 98% 44% 1 10 1 RND - - branching Disc. - (13)
1 17% 69% 1 10 1 RND - - branching Disc. - (13)
2 44% 32% 1 10 1 RND - - branching Disc. - (13)
3 26% 22% 1 10 1 RND - - branching Disc. - (13)
4 42% 30% 1 10 1 RND - - branching Disc. - (13)
5 37% 21% 1 10 1 RND - - branching Disc. - (13)
6 26% 28% 1 10 1 RND - - branching Disc. - (13)
7 0% 0% 1 10 1 RND - - branching Disc. - (13)

All experiments presented in the thesis include detailed results through tables, figures and external
links to software, data or extended results. The best results obtained on each of the environments tested
are summarised in Tables 9.1-9.6. We note that random initialisation is sufficient in most environments,
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although MCTS initialisation was suggested by automatic optimisation as the best option in “Camel Race”
(a game with large and sparse levels, where MCTS can be used for the initial assessment of the state
space and potential dangers around the player, for RHEA to then take over and discover those further away
rewards); 1SLA initialisation is recommended in 2 other games: “Wait for Breakfast” and “Plaque Attack”,
both of which need first a thorough assessment of the immediate next states possible (to avoid sudden
losses). In real-time environments with fixed action space sizes, a population size of 10 and individual
length of 15 is often preferred (or slight variations up or down, generally the higher values, the better,
given a constraint budget), with offspring equal to the population size. In environments with dynamic
action spaces, however, we recommend keeping a single individual in the population with length sufficient
to catch interesting changes in the game state (e.g. length 12 in “Pommerman” is just about longer than
the time a bomb takes to explode). The shift buffer enhancement aids performance in most environments,
although it should not generally be used with the dynamic depth enhancement. Generally, RHEA is strong
in environments with sparse rewards and/or large dynamic action spaces. We recommend starting from the
variant described here for the environment that most closely matches the desired new testbed, to then add or
remove enhancements and modify the population size and individual length so as to maximise these within
the experimental constraints.

All experiments are grounded in past work in the area of general video game playing and include
direct comparisons to Monte Carlo Tree Search, the previous state-of-the-art in the domain and favourite
across many environments. The thesis compares not only the performance of these algorithms, but also
their behaviour and particular differences in thinking process, with the aim of shading some light into their
distinctions, similarities, and best-case applications. Several variations of the Rolling Horizon Evolutionary
Algorithm are shown to outperform MCTS, and we hope to see RHEA as the algorithm of choice much
more often due to its superior performance especially in complex sparse reward environments, its simplicity
and high adaptability.

9.1 Future work

Regarding topics not yet covered of this vast problem, one fairly straightforward line of future work is the
improvement of the vanilla Rolling Horizon Evolutionary Algorithm in this general setting. The objectives
are twofold: first, seeking bigger improvements of action sequences during the evolution phase, without
the need of having too broad an exploration as in the case of Random Search; and second, being able to
better handle long individual lengths in order for them to not hinder the evolutionary process. Additionally,
further analysis could be conducted on stochastic games, considering the effects of more elite members in
the population or re-sampling individuals, in order to alleviate the effect of noise in the evaluations.

Additionally, no work has been done in the use of macro actions in grid-based games in GVGAI, al-
though it seems natural that different macro action lengths will also be needed per game. Ideally, an ap-
proach that could bring good performance to the agents would be one where each action is more involved,
performing moves such as path-finding to the closest sprite of a given type, or escape from a given location.

An approach that could inspire future work was that by Kelly et al. (290). They looked at a genetic
programming algorithm applied to a similar problem, but using the Arcade Learning Environment and
screen capture as input instead. Their proposed technique, Tangled Program Graph (which creates and
evolves a graph of sub-programs meant to solve different sub-problems) outperforms deep learning, while
using significantly lower computation power.

Further, it would be interesting to explore different versions of the algorithm which could improve its
search efficiency. For example, Harik et al. (291) attempted to make better use of the evolution budget by
using an estimation of a distribution vector instead of a population for binary optimisation problems. Only
two individuals would be sampled and evaluated from this vector at each iteration to determine a winner and
a loser and adjust the distribution vector to match the winner - thus eliminating evolutionary operators such
as mutation or crossover. This method was shown to be effective in noisy environments by Friedrich (292).
It is possible to expand this method from binary problems to the multi-action GVGAI games my studies
are concerned with, therefore possibly giving the algorithm an advantage in stochastic games. Lucas et al.
(263) have also proposed modifications to this algorithm which were suggested to outperform the original.

The rest of this section reviews other interesting works that could be used for future research in the area,
in particular to extend the algorithm to multi-objective and multi-player scenarios.

Multi-objective. Most of the games in the GVGAI Framework have multiple (possibly conflicting) ob-
jectives, starting form the simplest case in which an agent wants to win, but also achieve the highest score
possible. This can be further looked into as an agent wanting to explore as much of the level as possible,
eliminating Non-Player Characters, collecting resources etc.
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Thus rises the need to balance all the different aspects of one game and direct the search so as to satisfy
the multiple objectives. One game competition that addressed this problem specifically was the Multi-
Objective Physical Travelling Salesman Problem (MO-PTSP) Competition organised in 2013 (293). In this
modification of the Physical Travelling Salesman Problem, the players control a ship that must not only
collect all the waypoints in the shortest time possible, but also minimise fuel consumption. The winning
entry used a Monte Carlo Tree Search controller, with the addition of several other algorithms for distance
mapping and TSP route planning. The parameters of the algorithm were adjusted with a Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) (294) in order to balance between the different objectives.

There are several studies in the literature on Multi-Objective Monte Carlo Tree Search (MO-MCTS)
methods. Perez et al. introduced one technique in (295; 296) and measured it, in both offline and online
scenarios, against a previous MO-MCTS algorithm (297), as well as the state-of-the-art in Multi-Objective
Evolutionary Algorithms, Non-dominated Sorting Evolutionary Algorithm 2 (NSGA-II) (298). In their al-
gorithm, Pareto-MO-MCTS, each node in the search tree additionally keeps track of a local pareto front
(a set of non-dominated solutions), updated after a new vector of rewards is obtained from Monte Carlo
simulations. They suggest that Pareto-MO-MCTS performs similarly to the previous MO-MCTS imple-
mentation, but they outperform NSGA-II on both test problems, Deep Sea Treasure (an episodic puzzle
game) and Puddle Driver (similar to PTSP). However, it is reported that NSGA-II does not always provide
worse solutions and provides a better solution distribution on the pareto front due to its use of population
diversity methods.

Later, Perez et al. (299) introduced multi-objective methods to GVGAI for some interesting outcomes.
The conflicting objectives they identified were the game score and the level exploration (approached through
a pheromone trail heuristic), while weighing in appropriately a win or a loss for the agent. These methods
are only applied to Monte Carlo Tree Search algorithms, leaving it an open question whether the same
would work in EAs. As such, they tested the MO-MCTS presented in their previous work against the
sample controller MCTS (which only takes into account the game score), a weighted-sum MO-MCTS and
a mixed strategy MO-MCTS (which randomly chooses a different strategy for each game tick). The results
indicate that the first controller achieves much better win rates overall and better average scores in most
games than the other three, highlighting that the way the objectives are combined impacts performance.

Khalifa et al. (300) developed a multi-objective benchmark extended upon the existing GVGAI frame-
work. This problem would focus on adjusting the parameters in a complex UCB equation for a simple
Monte Carlo Tree Search algorithm, so that it performs well on several problems. The UCB equation used
combined several game aspects to guide tree node selection, such as number of or proximity to certain
sprites. Therefore, this agent would be a weighted-sum MO-MCTS trained offline (using the SMS-EMOA
algorithm (301)). Their results indicate that it is possible to configure this agent so that it performs better
across the games, although performances are not reported.

An overview of Multi-Objective Evolutionary Algorithms and the state-of-the-art in 2011 is given in
a survey by Zhou et al. (302). MOEAs have been widely used for multi-objective problems, with the
inner objectives of converging to the true Pareto front, as well as obtaining a population as diverse as
possible. They discuss methods such as decomposition or co-evolution based algorithms, following the
idea of divide and conquer, or hybrid algorithms aiming to make the best of different methods. The tuning
of the algorithm’s control parameters is discussed, the issue of applicability in real world problems being
raised, especially domains where specific knowledge may not be available (e.g. the general setting my
research is concerned with). To this extent, methods of adjusting mutation or crossover rates depending on
population diversity are suggested, or learning and adjusting the lower and upper bounds of parameters to
search within a more relevant solution space.

Noisy MO optimisation is covered in one of the sections as well, this being relevant to the GVGAI
domain as most games present some aspect of stochasticity. Most commonly used methods to handle noise
in such problems are indicated to be re-sampling (a costly solution; alternatives include Syberfeldt et al.’s
(303) iterative re-sampling guided by a confidence metric, in turn based on the amount of noise in the
neighbouring area in the solution space) or probabilistic ranking process introduced by Hughes in (304),
which includes in the evaluation of a solution the standard deviation to minimise the effect of noise.

Multi-player. Multi-player games involve two or more players controlling one game object each. A
distinction is made here to multi-agent games (where one or two players control several game objects
each).

The idea of co-evolution presented in (305) can be used in multi-player games, where secondary pop-
ulations of individuals are assigned to the other players. Panait and Luke identify the difference between
cooperative and competitive co-evolution, where individuals evolve against each other to either help or be
better than others; a typical way of achieving this effect is stated to be splitting the computation into dif-
ferent populations corresponding to sub-parts of the problem and evolving them in parallel, while allowing
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them to interact in ways appropriate for the problem analysed.
Liu et al. (73) suggest an expansion of the single-player RHEA algorithm to two players (and possibly

multiple others) in real-time games, by employing a co-evolution model of one population for each different
player and using the actions from both to simulate possible future states and improve the action sequences.
Their algorithm is tested on a two-player Space Battle game and returns favourable results.

Although Rolling Horizon Evolutionary Algorithms have not been traditionally applied to adversarial
games due to their nature of not considering the presence of an opponent (co-evolutionary methods do so,
but not the vanilla algorithm), they have seen limited success in multi-agent games. These are multi-player
games in which the player does not only gave one avatar to control (as is the case in the GVGAI Framework
used in my studies), but several units that one or multiple actions may be given to. This leads to a very large
branching factor, a difficult challenge for an AI agent to handle.

For example, Wang et al. (306) employed a modified version of online evolution using a portfolio of
scripts to play Starcraft micro. In this work, rather than evolving groups or sequences of actions, the
algorithm evolved plans to determine which script (among a set of available ones) each unit should use at
each time step. Each gene in the individual represents a script that will be executed by a given unit in the
next turn. Their results show evolution to be better than the other methods tested (Portfolio Greedy Search
and Script and Cluster based UCT, the last of which attempts to cluster several units that are close together
so they are assigned the same script) in moderate and large battles.

Additionally, Justesen et al. (76) used online evolution in Hero Academy, a turn-based game in which
each of the 2 players controls multiple units and has 5 action points to distribute between them each turn.
Their EA (Online Evolutionary Planning, or OEP) is compared against simpler methods (GreedyAction and
GreedyTurn which consider the next best possible legal action or turn, respectively), as well as Monte Carlo
Tree Search. They show in their work that Evolution wins over 80% of the games against the best of the
other methods. However, they do consider the fact that MCTS was not built for this type of scenario, its low
performance being due to it not being able to explore enough states and expand its tree efficiently enough
(it is rarely able to even consider the opponent’s subsequent move). Their results are promising, but more
research in the area of multi-agent games and games with high branching factors is strongly encouraged.

This work was later expanded (307) to compare OEP with variations of MCTS, including a Non-
Exploring MCTS (NE-MCTS, all children nodes are visited at least once before expanding, but the explo-
ration term in the UCB equation is nullified; deterministic rollouts are used as well, controlled by a greedy
policy) and a Bridge-Burning MCTS (BB-MCTS, an aggressive pruning strategy that cuts unpromising
parts of the search tree out at set intervals and ignores them for the rest of the search). The NE-MCTS algo-
rithm turns out to be the best performing out of all the methods analysed, but with no overall significance
over OEP or BB-MCTS.

A second experiment was performed where the game complexity was increased (by increasing the
number of action points available per turn). These results showed the Online Evolution method to have the
best scalability, ending up with an over 55% win rate when playing against all MCTS variants in 100 games.
When tested against human players, OEP won 25% of the games that were completed by the human testers,
but 67% of total games, including those where players abandoned the game before finishing (indicating that
they left because they were behind and predicted a loss). This shows the algorithm may be competitive
against human players, although experiments in a more rigorous scenario are needed to clarify this aspect.

Co-evolution could be considered a natural way of dealing with a multi-agent problem, as suggested by
Panait and Luke (305) in their survey on cooperative multi-agent methods.
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[295] D. P. Liébana, S. Samothrakis, and S. M. Lucas, “Online and Offline Learning in Multi-Objective
Monte Carlo Tree Search,” in 2013 IEEE Conference on Computational Inteligence in Games (CIG),
Niagara Falls, ON, Canada, August 11-13, 2013, 2013, pp. 1–8.
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[299] D. P. Liébana, S. Mostaghim, and S. M. Lucas, “Multi-Objective Tree Search Approaches for General
Video Game Playing,” in IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC,
Canada, July 24-29, 2016, 2016, pp. 624–631.

[300] A. Khalifa, M. Preuss, and J. Togelius, “Multi-objective Adaptation of a Parameterized GVGAI
Agent Towards Several Games,” in 9th International Conference on Evolutionary Multi-Criterion
Optimization – Volume 10173, ser. EMO 2017, New York, NY, USA, 2017, pp. 359–374.

[301] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective Selection Based on Dom-
inated Hypervolume,” European Journal of Operational Research, vol. 181, no. 3, pp. 1653 – 1669,
2007.

[302] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, “Multiobjective Evolutionary
Algorithms: A Survey of the State of the Art.” Swarm and Evolutionary Computation, vol. 1, no. 1,
pp. 32–49, 2011.

[303] A. Syberfeldt, A. Ng, R. I. John, and P. Moore, “Evolutionary Optimisation of Noisy Multi-Objective
Problems Using Confidence-Based Dynamic Resampling,” European Journal of Operational Re-
search, vol. 204, no. 3, pp. 533 – 544, 2010.

[304] E. Hughes, “Evolutionary multi-objective ranking with uncertainty and noise,” in Proceedings of
the First International Conference on Evolutionary Multi-Criterion Optimization, ser. EMO ’01.
London, UK, UK: Springer-Verlag, 2001, pp. 329–343.

[305] L. Panait and S. Luke, “Cooperative Multi-Agent Learning: The State of the Art,” Autonomous
Agents and Multi-Agent Systems, vol. 11, no. 3, pp. 387–434, Nov. 2005.
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Appendix A

20 GVGAI Games

Game Description Image

Aliens

The player controls a spaceship at the bot-
tom of the screen, and must shoot all aliens
which spawn at the top and slowly de-
scend towards the player, while avoiding
the bombs the aliens drop. They score
points for killing aliens and for destroying
protective bases.

Bait
The player navigates a small sokoban-style
maze to find a key and exit through the
door.

Butterflies

The player must collect all butterflies fly-
ing randomly around a meadow, gaining
points for each they collect. If butterflies
collide with cocoons spread out through
the level, more butterflies spawn - if all co-
coons are open, however, the player loses.

Camel
Race

The player must reach the exit on the oppo-
site side of the level first, before all of the
other NPCs.

Chase

The player must catch NPC sprites which
run away from them, and win when they
catch them all. However, the NPCs leave
carcasses behind when caught, and if an-
other NPC collides with a carcass, they
become angry and hunt the player, killing
them if caught.
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Chopper

The player must protect satellites at the
top of the screen from tanks spawning and
shooting from the bottom. They have lim-
ited ammo and must collect more to be able
to destroy all tanks and win the game.

Crossfire
The player must navigate a dangerous
maze to the exit, avoiding the cannons
which shoot each in a chosen direction.

Dig Dug

A complex game where the player can de-
stroy obstacles to make new paths through
the level. In doing so, they should collect
all loot and kill all enemies in order to win.

Escape
The player must navigate a sokoban-style
maze to reach the exit, while avoiding the
holes.

Hungry
Birds

The player must navigate the maze to reach
the exit. They have a limited time to do
so, dictated by a hunger bar. Hunger can
be replenished with resources around the
level, to help the player make it to the end.

Infection The player must help control a disease
rapidly spreading through citizens.

Intersection

The player finds themselves in the corner
of a busy intersection, which they must tra-
verse (avoiding the incoming cars) to make
it to the exit. If the player gets hit by a car
or arrives at the exit, they respawn at the
beginning. Each trip to the exit earns them
points, and the goal is to obtain as many
points as possible in the time limit.
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Lemmings
Lemmings spawn in one corner of the
level, and the player must carve a safe path
for them to the exit.

Missile
Com-
mand

Cities at the bottom are threatened by
falling missiles. The player must destroy
the missiles before the missiles destroy all
of the cities, earning points in doing so.

Modality

The player can only move onto the colour
they are currently on, or change colour
through the transition point (pictured in the
middle). Their goal is to move the tree into
the hole.

Plaque
Attack

Similar to Missile Command, teeth at the
bottom are attacked by fast food spawning
from the top. The player can destroy the
food approaching, or heal the broken teeth
(teeth break if they come into contact with
the food). The player wins if they survive,
and lose if all teeth break.

Roguelike

The player must navigate a complex dun-
geon to find keys which unlock doors to
the exit, while fighting enemies, collecting
coins and health points and avoiding a mul-
titude of traps.

Seaquest

The player navigates a submarine, with the
mission of picking up divers which spawn
at the bottom (4 at a time maximum) and
bring them to the top for a large reward.
They must avoid the sharks and other dan-
gers in the waters, while managing their
oxygen bar (replenished at the surface).
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Survive
Zombies

The player must survive until the time
runs out by avoiding the zombies spawn-
ing at different points in the level, collect-
ing hearts to increase their health and using
the priests to defend against the zombies.

Wait for
Breakfast

At some point during the game, a waiter
comes from the kitchen and delivers food
at a table. The player must sit at that loca-
tion (and only there) and wait at that loca-
tion until the end of the game to win.
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Appendix B

Deceptive Games

Game Description Image

Decepti
Coins

The player must reach the exit. There are
2 paths to do so, one with few immedi-
ate rewards, one longer with more rewards.
Once a path is chosen, the access to the
other is blocked.

Decepti
Zelda

The player must navigate a Zelda-like dun-
geon, find a key and exit through the door,
while fighting enemies on the way. There
are 2 doors to choose from, one on a safe
path that gives few points, and another be-
hind several enemies and challenges which
gives more points.

Flower

Several flowers in the level start from the
stage of seed, growing through several
stages until a maximum. Once collected,
the flower resets to the seed stage. They
give more points the bigger they are. The
goal of the player is to collect as many
points as possible in the time limit.

Invest

The player can collect coins in the level
and give them to one of the 3 NPCs, which
trigger a random event at some point in
the future rewarding the player with more
coins than they initially lost. The goal of
the player is to obtain as many points as
possible.
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Sister
Savior

Several hostages are guarded by enemies.
The player can save the hostages for a
small reward, or kill them for a larger re-
ward. If all hostages are saved, the player
can kill the enemies and win the game.

Wafer
Thin
Mints

The player can collect rewards through the
level, but if they collect too many they die
and lose the game.
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Appendix C

Physics-Based Games

Game Description Image

Artillery

The player controls a cannon with a fixed
position that can rotate left or right, and
shoots balls (affected by gravity) which de-
stroy some parts of the level (and earns 1
point), as well as targets. The player wins
when all targets have been destroyed.

Asteroids

The player controls a spaceship that can
rotate, accelerate and decelerate, flying in
space with the mission of destroying all
targets, and any other breakable objects for
1 point each. The player wins when all tar-
gets have been destroyed. Clone of classic
“Asteroids”.

Bird

The player controls a bird affected by grav-
ity, with only 1 action for control (jump).
They must navigate a series of pipes form-
ing narrow corridors and collect coins for
points. The player wins when they reach
the exit. Clone of “Flappy Bird”.

Bubble

The player controls a shooter at the bot-
tom of the screen which can move left and
right and shoot straight up. There are balls
of 3 sizes bouncing around the level. Hit-
ting bigger balls splits them into 2 of the
next smaller size. Hitting the smallest balls
destroys them. Each hit earns the player
points and they win when all balls are de-
stroyed. Clone of “Bubble Trouble”.

Candy

The player controls a jumping avatar which
can also move left and right. They nav-
igate several platforms, collecting points
and avoiding enemies, to reach the exit.
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Lander

The player controls a spaceship which falls
with a particular speed, and they can ro-
tate to redirect it and adjust the speed. The
player wins when the spaceships lands on
particular platforms, avoiding the obstacles
in the level. Clone of “Lunar Lander”.

Mario

The player controls a jumping avatar that
can also move left and right. They must
navigate several platforms in complex lev-
els, collecting coins and avoiding enemies
to reach the exit. Clone of “Super Mario”.

Pong

The player controls a paddle on the left of
the screen and must catch a ball bounc-
ing around the level, so as it hits the op-
ponent wall (behind their paddle), and not
the player’s wall. Clone of “Pong”.

PTSP

The player controls a spaceship that can ro-
tate, accelerate and decelerate. They must
collect all targets in the level as fast as
possible, while avoiding aliens. Clone of
“Physical Travelling Salesman Problem”.

Racing

The player controls a car moving at con-
stant speed (they can only rotate) and must
navigate a maze, collecting points along
the way, until they reach the exit.

196


	Introduction
	Contributions
	Definitions
	Associated Publications
	Thesis Structure

	Background
	General Video Game Playing
	General Video Game AI Framework
	Game set
	Sparse reward systems

	Monte Carlo Tree Search
	Implementation Details
	State evaluation

	Rolling Horizon Evolutionary Algorithms
	RHEA improvements
	RHEA hybrids
	Population diversity
	Macro actions

	Visual Game Analysis
	Win Prediction
	Optimisation

	Rolling Horizon Evolutionary Algorithm
	Vanilla RHEA
	Modifications and Parameters
	Genetic Operators
	Fitness Assignment
	Initialisation
	Frame-skip
	Shift Buffer
	Dynamic Depth
	Monte Carlo Rollouts
	Bandit-Based Mutation
	Statistical Tree
	Diversity
	Other Parameters


	RHEA Benchmarking
	Population Size and Individual Length
	Results and Discussion

	Population Initialisation
	1SLA Seeding (Algorithm RHEA-1SLA)
	MCTS Seeding (Algorithm RHEA-MCTS)
	Results and Discussion
	Overall Seeding Comparison

	Hybrids
	Results and Discussion

	Conclusions

	RHEA Analysis
	Visual Analysis
	Sparse Reward Landscapes
	Baseline Methods
	Experiments
	Results and Discussions

	General Win Prediction
	Classification
	Data set
	Predictive models
	Live play results

	Conclusions

	Automatic Parameter Optimisation
	Offline
	N-Tuple Bandit Evolutionary Algorithm
	Experiments

	Online
	Approach
	Experimental Setup
	Results and Discussion

	Conclusions

	Applications
	RHEA in Pommerman
	Related work
	Framework
	Agents
	Experimental Setup
	Results

	RHEA in Tribes
	Strategy Games
	The Framework
	Agents
	Experiments and Analysis

	RHEA in Tabletop Games
	Tabletop Games
	The Framework
	Discussion
	Challenges and Opportunities

	Conclusions

	Further Research Pathways
	Project Thyia: RHEA as AI Entity
	AI Entities
	Continual Learning
	Learning while Planning
	Planning to Learn
	Proposed System: Thyia
	Ethical Implications

	Representation Types
	rhNEAT
	Experiments

	Physics-Based Games
	Real-World Physics Games in GVGAI
	Experiments
	Results and Discussion

	Conclusions

	Thesis Conclusions
	Future work

	20 GVGAI Games
	Deceptive Games
	Physics-Based Games

