
Learning Local Forward Models
on Unforgiving Games

Alexander Dockhorn∗, Simon M. Lucas+, Vanessa Volz+, Ivan Bravi+, Raluca D. Gaina+, Diego Perez-Liebana+

Abstract—This paper examines learning approaches for for-
ward models based on local cell transition functions. We provide
a formal definition of local forward models for which we propose
two basic learning approaches. Our analysis is based on the game
Sokoban, where a wrong action can lead to an unsolvable game
state. Therefore, an accurate prediction of an action’s resulting
state is necessary to avoid this scenario.

In contrast to learning the complete state transition function,
local forward models allow extracting multiple training examples
from a single state transition. In this way, the Hash Set model,
as well as the Decision Tree model, quickly learn to predict
upcoming state transitions of both the training and the test set.
Applying the model using a statistical forward planner showed
that the best models can be used to satisfying degree even in
cases in which the test levels have not yet been seen.

Our evaluation includes an analysis of various local neighbour-
hood patterns and sizes to test the learners’ capabilities in case
too few or too many attributes are extracted, of which the latter
has shown do degrade the performance of the model learner.

Index Terms—Forward Model Learning, Local Forward
Model, Decision Tree, Rolling Horizon Evolutionary Algorithm

I. INTRODUCTION

Learning Forward Models (FMs) is an important challenge
in Artificial Intelligence (AI). An FM is used to simulate
future system states given an initial state and a sequence of
actions. FMs are essential for Statistical Forward Planning
(SFP) methods, such as Monte Carlo Tree Search or Rolling
Horizon Evolutionary Algorithms. Learning FMs is an active
subject of study involving several approaches, notably deep
learning and rule induction.

In previous work [3, 6], we proposed to use an ensemble
of local models as an FM in grid-based games. In these, the
next state of a given cell often depends on the surrounding
ones and thus seem specifically well suited for this approach.
Thus, by assuming locality, the amount of data required to
train reliable FMs can be reduced in comparison to end-to-end
models. Usually, this assumption is justifiable, as locality can
often be easily identified by studying the game’s ruleset.

The proposed approach was shown to work well on several
games of the GVGAI framework [3] and the Game of Life [6].
However, the performance of an AI in the Game of Life has
shown to be robust to a small number of errors in the FM,
as decisions based on wrong predictions usually hamper the

∗ with the Computational Intelligence Research Group, Otto von Guericke
University, Magdeburg, Germany.

+ with the School of Electrical Engineering and Computer Engineering,
Queen Mary University of London, London, UK.

Fig. 1: Examples of Sokoban levels. The player (dwarf avatar)
must push all boxes (grey blocks) into the targets (orange
circles) to complete the level.

performance only temporarily. In addition, even one game tick
provides a large number of training samples.

In this paper, we thus test the local FM approach further on
the puzzle game Sokoban which usually has a smaller map
size than the Game of Life and contains a larger number of
tile types. FMs thus need to be trained on smaller data sets. In
addition, Sokoban is an unforgiving game. This means that a
single wrong decision can at times lead to an irreversible state
that results in losing the game. This aspect translates to an
added layer of difficulty for training the FM, as the prediction
accuracy for specific states is crucial to winning the game.

In the following, we first provide a description of Sokoban
and the difficulties associated with the game. In section III,
we give an overview of the local modelling approach used in
this paper. We describe our experimental setup in section IV
and our results in section V. We draw conclusions from our
findings in section VI and discuss promising future work.

II. SOKOBAN

Sokoban (Thinking Rabbit, 1982) is a classic puzzle game in
which the player must push a determined number of crates into
designated locations to complete each level. The player can
move in four directions (up, down, left, and right) and push
boxes in the direction of travel. Pulling boxes is not possible.
The levels in Sokoban contain immovable blocks and the play
area is surrounded by walls. Figure 1 shows three examples
of levels for this game. There are thousands of Sokoban levels
available1 created by the community around this game.

The main complexity of Sokoban resides in the fact that it
has trap moves: pushing a crate against a wall may importantly
limit the positions to which this box can be moved further,
possibly making the level unsolvable. Additionally, the game is
difficult to solve for game playing AI agents, as its rewards are
sparse. By default, the only feedback is the victory condition
when all crates are placed at the predefined locations or number

1http://www.sourcecode.se/sokoban/levels
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

of boxes on goal tiles. In order to smooth out the reward
landscape, we will make use of the latter. The combination of
these two aspects makes Sokoban an interesting benchmark
for AI and, in particular, for FM learning.

The implementation of Sokoban used for this paper can be
found in a GitHub repository2. This is an efficient implemen-
tation of the game (running approximately at 12.5 thousand
ticks per second3) written in Java and Kotlin.

III. METHODS

A. Learning Local Forward Models

While learning an FM is a hard problem in general, it can be
made more approachable by considering only local interactions
(or perhaps mostly local interactions). This approach has been
motivated by the experiments of [1] in which local models of
the player and its surrounding objects were used to predict
future states of the game and their rewards.

1) Definition of a Local Model: Given a system (game) state
St perceived through multiple sensors (S

(1)
t , S

(2)
t , . . . , S

(n)
t),

a state transition function f maps the current state and the
agent’s action At ∈ A to the next system state St+1

f : S,A → S St, At 7−→ St+1 (1)

In contrast to mapping the transition of the whole state
and therefore the transition of all its sensor values in a single
transition function, the game’s transition function can also be
split into multiple components, each mapping the transition of
a subset of observable values or a single value:

fi : S,A → S(i) St, At 7−→ S
(i)
t+1 (2)

This approach can be useful when the transition function for
each observable value can be reduced due to its independence
of some of the state’s components. Especially in grid-based
games, this characteristic is represented by the absence of global
effects such that the future state of a cell can be determined
by only observing the local neighbourhood of the cell.

In this paper, we restrict ourselves to the consideration of
models for grid-based games. In this games, a state can be
represented as a set of tiles arranged in a grid where T (x, y)
specifies the tile at position x, y on the grid. For all grid tiles
we aim to predict the state of each tile at time t+ 1 based on
the state of the cell and its local neighbourhood at time t. Let
the local state transition function fx,y be given by:

fx,y : N(x, y)t, At 7−→ T (x, y)t+1 (3)

In this work we consider two types of local neighbourhoods,
namely the cross pattern and the square pattern (cf. 2).

Ncross(x, y) =
{
T (x+ i, y)

∣∣ 0 ≤ |i| ≤ span
}
∪{

T (x, y + j)
∣∣ 0 ≤ |j| ≤ span

} (4)

Nsquare(x, y) =
{
T (x+ i, y + j)

∣∣ 0 ≤ |i| ≤ span,

0 ≤ |j| ≤ span
} (5)

2https://github.com/GAIGResearch/LearningFM
3using a MacBook Air, 1.8 GHz Intel Core i5, 8 GB 1600 MHz DDR3

Fig. 2: Local neighbourhood patterns (which include the centre
tile) used to predict the next state of the centre tile.

Various spans will be tested to explore the influence of
providing the learning approaches with too much or not enough
information to predict the centre tile.

Access to the previous history may also be possible, but
whether or not this is necessary depends on whether the game
(or our observation of it) is Markovian.4 Whether Sokoban
is Markovian depends on how we observe it. If we are just
observing the tile image, it is non-Markovian, since an avatar
may be on top of an empty space or a hole, and just by
observing the current tile image there is no way to tell the
two possibilities apart. This has been overcome previously by
having a separate input plane for each tile type [8]. Here, we
solve it in a more space-efficient way by using a different
symbol for the avatar depending on whether it is over a space
or over a hole.

B. Implementation of Local Forward Models

In this work we consider two algorithms for local forward
model learning, the Hash Map and the Decision Tree Model.

a) Hash Map Model: After a state transition is observed,
the Hash Map Model extracts the action and the cell values
specified by the neighbourhood pattern. For each cell in the
grid, it stores the extracted values and the observed future state
distribution of the centre cell as key-value pairs in a Hash Map.
Note that we store a distribution rather than a single tile, since
when local models capture insufficient context the same local
pattern may map to many possible next centre cell values.

The generated Hash Map can be used to predict transitions
to upcoming states given the current grid and an (anticipated)
action. A future state can be generated by once again extracting
the local neighbourhood of each cell and looking up the most
likely future state of the centre cell in the Hash Map. In case
the Hash Map does not contain a given key, we assume that
no change of the centre cell will occur. This is a good baseline
assumption, as most cells do not change in an iteration.

b) Decision Tree Model: Similar to the Hash Map Model,
we first generate a training set of observed transitions per cell
by extracting tuples of action, local neighbourhood cell states,
and the resulting state of the centre cell. Using this training
set, a Decision Tree is trained to create a mapping from the
specified input to the future cell state. In contrast to the Hash
Map Model, the Decision Tree is able to generalise from
provided examples and can be used to classify unobserved
input patterns. However, unlike our Hash Map Model, the
Decision Tree currently stores only the first cell type to occur

4A system is Markovian if its transitions can be described by a memoryless
stochastic process.

for each local pattern, not a distribution of cell types. We chose
to create an unpruned Decision Tree to not exclude FM rules
that only occur rarely.

C. Agent Model

We test the applicability of learned FM using a Rolling
Horizon Evolution (RHEA) agent based on a 1 + 1 EA. This
agent generates a new solution (action sequence) at every
iteration through mutation of the original and replaces the
original if the new solution has a higher or equal fitness. Each
solution is evaluated by using the game’s model to simulate all
actions in the sequence, and the resulting game state is assessed
by a heuristic function (the game’s score, which, in the case
of Sokoban, is the number of boxes placed on targets). The
sequence may be evaluated several times in order to reduce the
noise, and the average of all final-state values is used as the
solution’s fitness. RHEA has proven effective across a range of
games [7, 5, 4]. A detailed description of the agent can be found
in [6]. The FM of the game is key to the evolution process (and
thus the performance of the agent), as it is used to evaluate
the fitness of generated solutions. Inaccurate models could,
therefore, lead to erroneous estimations of solution outcomes
(and implicitly their values).

IV. EVALUATION OF MODEL ACCURACY AND PLAYING
PERFORMANCE

For the experimental evaluation of the proposed local FM
learning methods, we trained the Hash Map and the Decision
Tree model on 10 Sokoban levels and tested their performance
in two regards - (1) achieved prediction accuracy and (2) its
effects on the performance of a game AI.

For the first set of experiments, each model is trained using
observed state transitions of a randomly moving agent. Each
of the ten training levels was played 100 times for 100 game
steps each. Then, we collected test data from unseen levels
in the same fashion. We use two test level sets of which the
first contains a single easy level and the second consists of 10
more complex levels. Both data sets thus contain independent
sets of observed transitions.

For each state transition in the complex test set, we let the
trained models predict the next state using the previous game
state and the agent’s action. The predicted grid is compared
to the real game state observed. We measure the accuracy of
the one-step prediction by counting the number of correctly
predicted tiles and dividing it by the number of total tiles.

In a second set of experiments (resulting playing perfor-
mance), the same pre-trained models are used in conjunction
with the RHEA agent to play the 10 unseen test levels. Using
the N-Tuple Bandit Evolutionary Algorithm (NTBEA) [5] we
first optimised the agent’s sequence parameters (selected values
shown in parentheses) including sequence length (40), number
of evaluations (40), mutation rate (0.4) and shift buffer (true) by
evaluating its playing performance on the training levels. The
final agent was used for evaluating the playing performance
while using either the true model, learned models, or a static
baseline model (predicting no change in the game state).

model easy hard
score score

Static Forward Model 0.40 0.64
True Forward Model 2.96 0.89

TABLE I: Baseline results

span unique easy hard
patterns acc score acc score

cr
os

s 1 5000 0.9930 0.73 0.9965 0.64
2 27419 0.9799 0.42 0.9894 0.65
3 46271 0.9771 0.41 0.9869 0.65

sq
ua

re 1 27667 0.9822 0.35 0.9919 0.65
2 151995 0.9773 0.43 0.9864 0.64
3 303200 0.9770 0.46 0.9863 0.65

TABLE II: Results of the Hash Map Model

span nr of easy hard
tree nodes acc score acc score

cr
os

s 1 679 0.9959 0.00 0.9973 0.67
2 459 0.9991 1.11 0.9997 0.80
3 664 0.9990 0.75 0.9995 0.78

sq
ua

re 1 1638 0.9972 0.00 0.9975 0.63
2 2088 0.9975 1.06 0.9988 0.63
3 2864 0.9981 0.66 0.9985 0.67

TABLE III: Results of the Decision Tree Model

In the evaluation of the models’ accuracy and the models’
resulting game playing performance, we varied the pattern
of the local neighbourhood and its span to determine their
influence on both performance measures. Theoretically, the
perfect model would require a span of 2 (i.e. a 5x5 square grid
or a cross within a 5x5 grid) to correctly model interactions
that involve the agent pushing a block. Agent movement
not considering boxes can be predicted using a span of 1.
Wall tiles can be predicted without knowledge of their local
neighbourhood since they will remain static.

V. RESULTS

The results of our experiments are summarised in tables I-III
showing average one-step prediction accuracy and average score
per level set. The baseline values indicate the varying difficulty
of the simple test level and the 10 complex problems. In case
of the simple test level, the measured difference in playing
performance using the true and the static FM is much larger
than in the hard test levels. The small gap between the average
score in the harder levels highlight the complexity of used test
levels and may indicate that the heuristic nature of the RHEA
agent may not be perfectly suitable for this game.

The evaluation of our proposed learning methods shows
that they are capable of predicting upcoming states with very
high accuracy. However, the analysis of the agents’ playing
performance using a trained model shows that the remaining
errors have a strong influence on the agent behaviour, as
an increase in accuracy often means an improved playing
performance. The trained model with the highest accuracy
(Decision Tree, cross pattern, span=2) achieved the highest
average score in both test level sets. In contrast, the achieved
average score using the Hash Map model is comparable to

Fig. 3: Results of an imperfect model. (left) initial game
state. (middle) true models’ intermediate state en route to
the solution, and (right) the estimated state by an imperfect
learned model. This is after the player has executed the actions:
DLDRDRRUL-UL, where the hyphen denotes the first point
at which the learned model diverged from the true model.

the playing performance when using a static FM. Overall, our
results indicate that our prediction accuracy measure may not
yield a fine-grained enough indication of model performance
due to the large number of static tiles per transition.

A. Effects of Imperfect Models
Figure 3 illustrates how a model can be imperfect but useful.

The figure shows the true and estimated states 11 steps into a
solution to the puzzle shown on the left. Note that the estimated
model was true to the original one for the first 9 steps, and
while it diverged on the 10th step, it still correctly predicted
the first ”goal” score, with a box on the left of the two targets.
After the 11th move, the learned model incorrectly indicates an
unsolvable game, with the remaining box stuck in the corner
and a proliferation of avatars. Nonetheless, an SFP algorithm
following this sequence would still have scored a point.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we tested the recently proposed FM learning
approach on Sokoban, which is an unforgiving game (a single
wrong action / prediction can lead to unsolvable game states).
While all trained models predicted following game states with
very high accuracy, we could show that this is not sufficient to
play the game with high performance using the learned model
as replacement for the true FM. Decisions based on wrongly
predicted game states may yield non-optimal actions leading
the agent into a trap state. Thus, single errors can have a drastic
effect on the resulting playing performance.

In our tests, the Hash Map model was able to predict game
states of both the training and the test set with high accuracy.
However, comparing the playing performance of trained Hash
Map models to a static FM indicates that the trained models
did not yield significantly better results. In comparison, the
best performing Decision Tree model, which is still worse than
using the true FM, yielded a significant improvement over using
the static FM. Nevertheless, the game playing performance of
the Decision Tree model was shown to be strongly dependent
on the used local neighbourhood. Increasing the number of
observed tiles also increases the number of observable patterns
and makes it harder to identify important components of the
input pattern. This reduces the model’s ability to generalise.

Overall, the local learning approach seems to be a promising
for cross level learning. As in the experiments in this paper, the

agent can be trained on a set of simple levels and the learned
model could later be applied to unknown levels.

The work presented in this paper only represents a fraction
of the possible directions that this research can take. Using
the same experimental settings, it is possible to investigate
not only future states, but also rewards learned by the FM.
Similarly, varying the shape or span of local patterns would
allow to fully test the learning capabilities of the system.
Alternatively, dependency analysis could be used to create
arbitrarily shaped patterns [2]. Exploiting rotation invariant
patterns may thus prove useful to reduce the number of
necessary training samples.

Furthermore, it would be interesting to investigate different
similarity measures between game states and the resulting
forward model prediction accuracy. This could help to explain
the agent behaviour and resulting score better, as well as to
identify patterns in Sokoban puzzles.

Future work can also answer interesting research questions
that concern the generality of the system. Each level and agent
provides a subset of the possible patterns that can be observed
in the game. These patterns are the input of the FM learning
methods, which can therefore be inaccurate in function of the
patterns discovered at the time of training. It is worthwhile
asking how many patterns (or levels) are required to train the
system so it can be used efficiently for new test levels. Similarly,
repair operators could be used to either repair unrealistic game
states (i.e. removing multiple agents as shown figure 3) or to
repair or retrain the model based on new observations.

Here we used NTBEA to tune the agent when using a perfect
model, but it may be possible to extract higher performance
from an imperfect model by optimising the RHEA parameters
when using that model.

Finally, it is also worth considering other games this work
can be extended to, such as Tetris or other GVGAI games.

REFERENCES

[1] A. Dockhorn and D. Apeldoorn. Forward Model Approximation
for General Video Game Learning. In Conference on Computa-
tional Intelligence and Games (CIG’18), pages 425–432, 2018.

[2] A. Dockhorn and R. Kruse. Detecting Sensor Dependencies for
Building Complementary Model Ensembles. In 28. Workshop on
Computational Intelligence, 2018.

[3] A. Dockhorn, T. Tippelt, and R. Kruse. Model Decomposition
for Forward Model Approximation. In Symposium Series on
Computational Intelligence (SSCI 18), pages 1751–1757, 2018.

[4] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana. Rolling Horizon
Evolution Enhancements in General Video Game Playing. In
2017 IEEE Conference on Computational Intelligence and Games
(CIG), pages 88–95. IEEE, 2017.

[5] S. M. Lucas, J. Liu, and D. Perez-Liebana. The N-Tuple
Bandit Evolutionary Algorithm for Game Agent Optimisation. In
Congress on Evolutionary Computation (CEC 18). IEEE, 2018.

[6] S. M. Lucas, et al. A local approach to forward model learning:
Results on the game of life game. In Conference on Games (CoG
19), 2019.

[7] S. M. Lucas, et al. Efficient evolutionary methods for game agent
optimisation: Model-based is best. CoRR, abs/1901.00723, 2019.

[8] T. Weber, et al. Imagination-augmented agents for deep re-
inforcement learning. CoRR, abs/1707.06203, 2017. URL
http://arxiv.org/abs/1707.06203.

