rdgain@essex.ac.uk rdgain.github.io

RHEA Enhancements In General Video Game Playing

IEEE CIG 2017

General video game playing

- One agent plays many games
- Games may be unknown / previously unseen

General Video Game AI (GVGAI, gvgai.net)

- Real-time planning problem (40ms)
- 2D grid-based games
- No information about game rules
- Limited information about current game state only
- Forward Model for simulation of possible future states

Motivation

- Rolling Horizon Evolutionary Algorithms (RHEA) show promise
 - in general video game playing
 - as showcased in GVGAI
- Several improvements in literature in various contexts
 - do they work in GVGP?
 - do they work together?

Methodology

- Look at 4 parts in the evolution process
 - Mutation operator
 - Population management
 - Action recommendation policy
 - Individual evaluation
- In isolation and combined (hybrids)
- Split into 2-part experiment
- On 20 GVGAI games
- With different core parameter configurations

Experimental Setup

- Population size P Individual length L = {1-6, 2-8, 5-10, 10-14}
- Budget: 900 Forward Model calls
- First part:
- EA-bandit, EA-tree and EA-shift (plus hybrids)
- Second part (best from first part + rollouts):
 - EA-tree, EA-shift and EA-roll (plus hybrids)
- Validation
 - Comparison with MCTS

Results Overview

- Shift buffer best, Bandit mutation worst
- Performance proportional to parameter values
 - But algorithm ranking not stable
- Shift buffer (small params) better than best vanilla

EA-Bandit

- Bandit-based mutation operator
- Balance between exploration and exploitation
- 2 level UCB bandits
 - Individual level: which gene?
 - Gene level: which value?

Results

- One of worst variants
- Epistasis (does not work for sequences of actions in this form)
- Most beneficial in large configurations

EA-Shift

EA-Tree

- During evaluation, keep **statistics** in a tree structure
- Similar to Monte Carlo Tree Search
 - Tree only used to choose action
- Final action: most visited (top level)

Results

- Mid-table
- Worst hybrids: +bandit mutation
- Most beneficial in low configurations

EA-Roll

- At the end of individual evaluation
 - Monte Carlo simulation Length L/2.
- Repeat R times
 - Use avg. as individual fitness

Results

- Best: EA-Shift-Roll (10-14, R=5), matches MCTS
- Most beneficial in low configs
- Most variants better with rollouts
- Tree hybrids worse

B EA-Roll

C EA-Shift

E EA-Tree

D EA-Shift-Roll

Win percentage for config 5-10. Color bar: in how many unique games row was significantly better than column.

MCTS

E EA-Bandit A Vanilla F EA-Bandit-Shift B EA-Shift C EA-Tree G EA-Bandit-Tree D EA-Tree-Shift H EA-Bandit-Tree-Shift

Future work

430

- Meta-heuristic: which one best for this task?
- Improved bandit mutation

41.30 (1.76)

More games to better judge significance

Win percentage for config 10-14, R=5. Color bar: in how many unique games row was significantly better than column. F EA-Tree-Roll

G EA-Tree-Shift

I MCTS

H EA-Tree-Shift-Roll