
Raluca D. Gaina | QMUL, UK
r.d.gaina@qmul.ac.uk | @b_gum22

Self-Adaptive Rolling Horizon EA
For General Video Game Playing

IEEE Conference on Games 2020

https://tinyurl.com/rhea20-paper

Hello! My name is Raluca Gaina and I am a PhD student at Queen Mary University of
London. And in this video I’ll be talking about a self-adaptive rolling horizon
evolutionary algorithm for general video game playing – talk based on a paper
published at the IEEE Conference on Games 2020. To quickly unpack the title:
• rolling horizon evolutionary algorithms are algorithms which use concepts from

evolution to evolve action plans while playing games;
• self-adaptive refers to the algorithm modifying its parameters while playing games

in order to improve its structure as well as the action sequences
• and general video game playing is the domain concerned with creating artificial

players able to play any game possible.

We’re looking at this topic in particular as there have been many advances in recent
years in evolutionary algorithms for game-playing and an ever increasing number of
parameters controlling its thinking process. But since we’re trying to play a variety of
games, some of these parameters work well only on some games, or even in
particular situations. So we are trying to increase the adaptability of the player by
allowing it to modify its control parameters while running.

1

Raluca D. Gaina

Queen Mary University of London

United Kingdom

Diego Pérez Liébana Simon M. Lucas

Chiara H. Sironi

Maastricht University

The Netherlands

Authors

Mark H.M. Winands2

This work was done in a collaboration with colleagues from Maastricht University.

2

Topics

Background on general video game playing

Introduction

EA for game-playing and parameter space

Rolling Horizon Evolutionary Algorithm

Optimisers used for the study:

Random, MAB, NMC, GA, NTBEA

Parameter Optimisation

Overview of results, parameter analysis

Results

Interesting findings and future work

Conclusions

3

To give a quick overview of this video, we’re looking first at some background on
general video game playing to contextualize the work. Next, I’ll go over how our
rolling horizon evolutionary algorithm works and its parameter space that we are
concerned with in this work, as well as the parameter optimisers used for this study.
Lastly, we’ll look at the results obtained, some interesting insights and a few ways in
which this work can be extended further. Let’s dive in!

3

Introduction

4

General Video Game Playing

any game !

Adaptive players that can act

intelligently in any given game,

even those unseen before or

with unknown rules

5

This work is within the domain of general video game playing. We’ve seen a lot in
media news of very good AI players in Go, Dota, Starcraft. And while these are very
impressive advancements, those players would have a very hard time picking up a
new game. Therefore we’re looking instead at highly adaptive general players, that
are able to take any game given to them and act intelligently in that environment.

5

Benchmark:

www.gvgai.net

Single-player planning

GVGAI
Two-player planning

Single-player learning

Level generation

Rule generation

Pérez Liébana, D., Lucas, S.M., Gaina, R.D., Togelius, J., Khalifa, A. and

Liu, J., 2019. General Video Game Artificial Intelligence. Synthesis

Lectures on Games and Computational Intelligence, 3(2), pp.1-191.

General Video Game AI

6

We’re using General Video Game AI (or GVGAI) for our benchmark, which contains
over 160 games and proposes many different challenges for AI methods, from playing
games by planning without seeing the game previously, learning how to play games
by repeatedly playing them and gathering experience; or even playing two-player
games, generating levels or generating rules! In this particular work, we’re focused on
the single-player planning track. You can find out about the framework and
competition in the book mentioned at the bottom of the screen.

6

Game Set Dig Dug

Lemmings

Roguelike

Chopper

Crossfire

Chase

Camel Race

Escape

Hungry Birds

Bait

Wait for Breakfast

Survive Zombies

Modality

Missile Command

Plaque Attack

Seaquest

Infection

Aliens

Butterflies

Intersection

5 levels each

Different winning conditions

Different sprite interactions

Different scoring systems

Different levels of stochasticity

Raluca D. Gaina, Sam Devlin, Diego Perez-Liebana, Simon M. Lucas,

2020. Rolling Horizon Evolutionary Algorithms for General Video

Game Playing. In arxiv:2003.12331.

7

We use a subset of 20 games from the GVGAI corpus with various features. All are
listed on the right, with some highlighted that will be mentioned more in this
discussion. A breakdown of all their features can be found in the paper cited at the
bottom, and all games can be found and played from the GVGAI framework. For our
experiments, we used all 5 levels of each game, with 20 runs per level (that gives 100
runs per game) and results and statistics will be presented averaged over all runs in a
game.

7

Rolling Horizon

Evolutionary

Algorithms

Within this domain, we look at rolling horizon evolutionary algorithms, which have
been shown to achieve high performance on a range of games, beating the previous
state of the art.

8

Baseline

a1, a2, a3, a4

b1, b2, b3, b4

c1, c2, c3, c4

d1, d2, d3, d4

...

z1, z2, z3, z4

d1, d2, d3, d4

Evaluate

+ sort

population
Modify

Repeat until budget spent

Promote best through elitism
Initialize with random

sequences of actions

P0
Pt

Play first action of best sequence

a1

Game state

9

d1, d2, d3, d4

x'1, a2, a3, b4

d1, c2, d3, x’4
c1, c2, x’3, a4

…

x'1, z2, d3, z4

The algorithm runs at every game tick, and begins with a population of individuals,
where each individual (or row in this diagram) is a random sequence of actions to be
played in the game. We can call the initial population P-0. We then evaluate each
individual using a copy of the current game state observation and a forward model
(which allows to simulate the effect of actions without actually playing them); the
game state reached after running through all the actions in the sequence is evaluated
with a heuristic function and the given value becomes the fitness of the individual. In
this case, the heuristic function simply aims to maximize the game score obtained by
the agent, prioritizing winning game states and avoiding losing game states.

Based on these values, the population is sorted and the best individual is promoted
directly to the next generation through elitism. The population is then modified with
various genetic operators in order to obtain a new population of the same size. The
process is repeated until the budget is spent, in this case 1000 simulations with the
forward model. Finally, the first action of the best sequence at the end of this
evolution process is actually played in the game. Everything repeats in the next game
tick.

Many parameters control this process, but for this work we are interested in those

9

that most affect one iteration, thus those included in this part. Let’s look at them
more closely.

9

Parameters (1)

Modify

Genetic Operator

Mutation Type

Mutation

Transducer

Selection Type

Crossover Type

Genetic Operator

- Crossover only

- Mutation only

- Both

10

We have 5 parameters that we will be automatically adjusting during play in this
work, with some dependencies. The Genetic Operator parameter controls which
operators are applied to generate the offspring: if crossover is used, the left branch
only is explored and new individuals are not mutated; if mutation is used, the right
branch is explored instead and each individual in the population is mutated once to
create the next generation. Alternatively, both can be used, in which case individuals
are created through crossover and then mutated as well.

10

Parameters (2) Selection Type

- Roulette

- Rank

- Tournament

30
8.2

5

2.4 0.6 0.4

Roulette

Selection

point

6

54

3

2 1

Rank Tournament

50

30

8.2

5

2.4

0.6

0.4 50

30

8.2
5

2.4

0.6

0.4

30

a1, a2, a3, a4

b1, b2, b3, b4

c1, c2, c3, c4

d1, d2, d3, d4

...

z1, z2, z3, z4

11

Selection is the process of selecting the parents in case crossover is used. Three
different types are available: roulette, which selects individuals with probabilities
directly proportional to their fitness; rank, which first ranks individuals based on their
fitness in descending order and selects them with probabilities directly proportional
to their rank (aiming to minimize the impact of large differences in fitness). And
tournament, which randomly chooses a subset of the population and then the best
amongst these is selected.

The selection type chosen is repeated so that two individuals are selected.

11

Parameters (3) Crossover Type

- Uniform

- 1-point

- 2-point

a1, a2, a3, a4

c1, c2, c3, c4

Uniform 1-point 2-point

a1, c2, a3, c4

c1, a2, c3, a4

a1, a2, c3, c4

c1, c2, a3, a4

a1, c2, c3, a4

c1, a2, a3, c4

12

Next, the two individuals, in this case the red and blue ones, are crossed to obtain
offspring. Three options are available here as well: uniform crossover randomly
selects genes from the parents with equal probabilities. 1-point crossover randomly
finds an index in the individual and chooses the first part (up until that index) from
one parent, and the second part from the other. And 2-point crossover find 2 indexes
and alternatively chooses the sections from the parents.

In our implementation, one individual is randomly discarded, so only one new
individual is created from a crossover operation.

12

Parameters (4) Mutation Type

- Uniform

- 1-bit

- 3-bit

- Softmax

- Diversity

a1, a2, a3, a4

(Random new gene)

Uniform 1-bit 3-bit

• Softmax: change 1 gene towards beginning of individual

• Diversity: change least visited gene to its least visited value

a1, a’2, a3, a’4 a’1, a2, a3, a4 a’1, a2, a’3, a’4

13

Mutation is the process of modifying some genes in an individual to new random
values. We have 5 options here to select which genes are modified:
• Uniform mutation modifies all genes, each with probability 1/L, where L is the

length of the sequence
• 1-bit mutation modifies one randomly chosen gene
• 3-bit mutation modifies 3 randomly chosen genes
• Softmax mutation uses the softmax equation to bias the gene selection towards

the beginning of the individual, which causes the largest perturbance in phenotype
(or, the actual behaviour of the agent in the environment) (as the overall path the
agent takes through the level would be most different if the beginning of that path
changes)

• And lastly, diversity mutation changes the least visited gene to its least visited
value, to promote exploration of all genes and their values.

13

Parameters (5) Mutation

Transducer

- True

- False

a1, a2, a3, a4

(Random new gene)

(Previous gene)

Uniform 1-bit 3-bit

a1, a1, a3, a3 a’1, a2, a3, a4 a’1, a2, a2, a2

14

The last parameter is the mutation transducer, which can only be enabled or
disabled. If enabled, this parameter causes the genes to be changed to the previous
action in the sequence, instead of a new random one. So uniform, 1-bit and 3-bit
mutation would produce something like this instead, with actions repeated. This is
meant to address the jitteriness observed in many of these general agents, which
often choose different directions to go in at every game tick, especially in
environments with sparse rewards; now, the agent is more likely to repeat the same
action several times and thus choose a direction and stick to it.

14

Parameters (6)

Genetic Operator Mutation TypeSelection Type Crossover Type Mutation TransducerSelection Type Crossover Type

15

As a recap, these are the parameters we’re looking at:.

15

Parameter

Optimisation

So how does automatically modifying these fit into the algorithm?

16

Online Tuning in RHEA

a1, a2, a3, a4

b1, b2, b3, b4

c1, c2, c3, c4

d1, d2, d3, d4

...

z1, z2, z3, z4

d1, d2, d3, d4

x'1, a2, a3, b4

d1, c2, d3, x’4
c1, c2, x’3, a4

…

x'1, z2, d3, z4

Evaluate

+ sort

population
Modify

Repeat until budget spent

Promote best through elitism
Initialize with random

sequences of actions

P0 Pt

Tuner

Parameters

Value 𝑟

Tuner payoff:

𝑟 = difference between

best RHEA individual Pt and

best RHEA individual Pt-1

(RHEA best fitness improvement)

Play first action of best sequence
17

Well, it looked something like this before. Now, before modifying the population for
the next generation, we ask the tuner to provide the parameters to be used for this
iteration. The rest of the loop works the same, but after evaluating this new
population, we return the value to the tuner as feedback for the quality of the
suggested parameters. While RHEA attempts to maximize the fitness of the
individuals (thus sequences that lead to the highest score), the tuner attempts to give
those parameters which lead to the highest fitness improvement from one
generation to the next.

17

Tuners

Random Genetic AlgorithmMulti-Armed Bandit Naïve Monte Carlo N-Tuple Bandit EA

18

We use 5 different methods to adjust the parameters.

18

⟨𝑃1⟩

𝑣1,2

𝑣1,1 𝑣1,2

𝑣3,1

𝑣3,1 𝑣3,2

𝑣2,1

⟨𝑃2⟩

𝑣2,1 𝑣2,2

⟨𝑃3⟩

⟨𝑃1, 𝑃2, 𝑃3⟩

19

First, random. For each of the different parameters, this method randomly picks one
valid value in order to form the set of parameters for an iteration. It does not use the
feedback of RHEA population improvement, but we do gather those statistics for
post-processing.

19

⟨𝑃1⟩

𝑣1,2

𝑣1,1 𝑣1,2

⟨𝑃3⟩

𝑣3,1

𝑣3,1 𝑣3,2

𝑣2,1

⟨𝑃2⟩

𝑣2,1 𝑣2,2

⟨𝑃1, 𝑃2, 𝑃3⟩

20

Second, a multi-armed bandit. Similarly, this method chooses a value for each of the
parameters. However, this uses statistics on how many times each value for each
parameter was chosen and what was the value returned, so that it balances between
exploring those values least explored, and exploiting those values which appear to
lead to the best results.

20

𝑣1
2

𝑃1
𝑣1
1 𝑣1

2

𝑣3
1

𝑃3
𝑣3
1 𝑣3

2

𝑣2
1

𝑃2
𝑣2
1 𝑣2

2 ⟨𝑣1
2, 𝑣2

2, 𝑣3
1⟩⟨𝑣1

1, 𝑣2
1, 𝑣3

1⟩ ⟨𝑣1
2, 𝑣2

1, 𝑣3
1⟩⟨𝑣1

1, 𝑣2
1, 𝑣3

2⟩

Probability 𝜺𝟎: EXPLORE Probability (𝟏 − 𝜺𝟎): EXPLOIT

⟨𝑃1, 𝑃2, 𝑃3⟩

21

Third, naïve monte carlo. This builds upon the previous method (seen on the left
side), which is applied with probability epsilon. More often, however, it will instead
choose to use a global multi-armed bandit instead, which will look at complete sets
of parameter values, using the statistics gathered through all previous samples.

21

⟨𝑣1,2, 𝑣2,1, 𝑣3,1⟩

⟨𝑣1,1, 𝑣2,2, 𝑣3,1⟩

⟨𝑣1,1, 𝑣2,1, 𝑣3,2⟩

⟨𝑣1,1, 𝑣2,1, 𝑣3,1⟩

Population of size λ

Elite of size μ

⟨𝑣1,1, 𝑣2,2, 𝑣3,1⟩

⟨𝑣1,1, 𝑣2,1, 𝑣3,2⟩

⟨𝒗𝟏,𝟏, 𝒗𝟐,𝟐, 𝒗𝟑,𝟐⟩

⟨𝑣1,1, 𝑣2,2, 𝑣3,1⟩

⟨𝑣1,1, 𝑣2,1, 𝑣3,2⟩

⟨𝒗𝟏,𝟐, 𝒗𝟐,𝟐, 𝒗𝟑,𝟏⟩

New population of size λ

3. Generate (λ − μ) offspring using the elite:

- Probability 𝑝𝑐: uniform crossover

- Probability (1 − 𝑝𝑐): 1-bit mutation

1. Evaluate each individual

2. Extract best μ individuals
4. Repeat

…...

22

Fourth, a genetic algorithm. Here, individuals are represented by sets of parameters
instead, and they are each evaluated as previously seen through one RHEA iteration.
Once all individuals in the population have been evaluated, the best miu algorithms
are selected, which will be used to generate offspring through uniform crossover, or
through 1-bit mutation, with some probability for each method. This results in a new
population and the process is repeated.

22

⟨𝑣1
2, 𝑣2

1, 𝑣3
1⟩⟨𝑣1

1, 𝑣2
1, 𝑣3

2⟩⟨𝑣1
1, 𝑣2

1, 𝑣3
1⟩

⟨𝑣1
1, 𝑣2

2, 𝑣3
1⟩

Evolutionary Algorithm N-Tuple fitness landscape model

⟨𝑃2⟩

𝑣2
1

𝑣2
2

⟨𝑃1, 𝑃2, 𝑃3⟩ ⟨𝑃1⟩ ⟨𝑃3⟩

𝑣3
1

𝑣3
2

⟨𝑣1
2, 𝑣2

1, 𝑣3
1⟩

⟨𝑣1
1, 𝑣2

2, 𝑣3
1⟩

⟨𝑣1
1, 𝑣2

1, 𝑣3
2⟩

⟨𝑣1
1, 𝑣2

1, 𝑣3
1⟩ 𝑣1

1

𝑣1
2

2. Generate 𝑛 neighbours

(via 1-bit mutation)

1. Evaluate solution

+ update model

4. Best neighbour

becomes next solution

3. Calculate UCB

value with average

model statistics

23

And the last tuner is the N-Tuple Bandit Evolutionary Algorithm (or NTBEA), which
again uses an evolutionary algorithm which evaluates one solution at a time and uses
the value returned to update an internal fitness model. For example, this individual
would put one entry into the 3-tuple records with its corresponding value, and 3
other entries for each parameter 1-tuple, with its chosen parameter value and
returned feedback value.

From this solution, several neighbours are generated through 1-bit mutation, and the
statistics in the model are used to approximate the value of all of these new
individuals (using a UCB value similar to the Multi-Armed Bandit and Naïve Monte
Carlo tuners). The neighbour with the highest value is chosen as the next solution to
be evaluated, and the process repeats.

23

Results

Paper data:

https://tinyurl.com/rhea20

Let’s see how these did in action! The link here includes more results, log summaries
and code to obtain the plots and tables from the paper.

24

Win Rate

25

First, we’ll look at the win rates obtained by the tuned agents. Here we see a plot
with win rates in each of the games tested, one bar per tuning method, with RHEA
state of the art results in green. It’s important to note that these are best results
obtained by any previous RHEA variant, and not a single algorithm as is our case.

The first thing to note is that the tuned agents perform very similarly to each other,
with small differences (not significant). There are a few games where the results are
on par with the state of the art – generally high win-rate games. But there are also
some in which some of these agents perform even better. Some highlights are
Butterflies and Seaquest, in which the random tuner achieves the highest
performance – these are stochastic games with very dynamic environments, in which
it appears to be beneficial for the agent to be switching its parameters often. A
similar peak can be seen in Wait for Breakfast, a game about finding the right seat
and waiting for food to be delivered: very simple in concept, but not always the
easiest to get right for these general players. And we can also see first win rates in Dig
Dug – a game with a large and complex environment, showcasing different
navigation, puzzle and obstacle avoidance tasks. The variation introduced by the
change in parameters helps the agent solve this problem, although more of such
instances are needed in order to be able to analyse its performance and discover the

25

key to success.

25

Game:Tuner

Mutation only Tournament 1-point Softmax True
Lemmings:NTBEA, Crossfire:NMC,

Aliens:RND, Intersection:RND

Crossover + Mutation Roulette Uniform Softmax True
Chopper:RND, Escape:MAB,

Seaquest:RND, Butterflies:EA

Parameter Combinations (1)

Most chosen combinations (5-tuples)

26

Next, we looked at what parameters were favoured by the tuning methods, as this
can give further insight into what works and what doesn’t in the algorithm.
Showcased here are the two most chosen combinations as the best across all games,
therefore the highest agreement amongst the tuners as to which parameters work
best together. In both of these we observe the combination of softmax mutation with
the mutation transducer enabled, which is a trend in several other games.

26

Parameter Combinations (2)

NMC worse performing, consistency not good?

No significant difference in tuner performance,

no strong evidence.

NMC most consistent, GA least

No two tuners recommend the same combo

of parameters for any of the games.

No full agreements between

tuners

Most often 2-tuple highlighted as best is

softmax mutation + mutation transducer on

Partial agreements observed

27

We measured the consistency in recommendations across all tuners, and observed
Naïve Monte Carlo to be most consistent, while the genetic algorithm was the least
consistent. The NMC tuner was on average worse performing, suggesting that
variation is actually beneficial when higher win rates are targeted, although the
difference was not significant and thus we have no strong evidence in this direction.

If we look at the games individually, no two tuners recommended the same
combination of parameters for any of them, but there were some partial agreements
in 2-tuples observed, as mentioned previously.

27

Individual Parameters (1)

Normalised count of times the parameter value was considered best

MAB MABNTBEA NMC

RHEA configuration:

• 5 Population Size

• 10 Individual Length

• 1000 FM calls

28

And looking at the individual parameters, there were some clear preferences in some
cases for particular values. Most interestingly, we note that no tuner valued softmax
mutation very highly in isolation, although it appears in several best 5-tuple
recommendations. 1-bit mutation is preferred instead on average. We further note
that the mutation genetic operator was preferred by most tuners, while crossover
only was deemed the worst option.

28

Individual Parameters (2)

MAB NTBEA

NMC

RHEA configuration:

• 5 Population Size

• 10 Individual Length

• 1000 FM calls

• Winning instances

MAB

Wait for Breakfast

Crossfire

29

And if we look at specific examples of parameter values in specific games, we can
observe the difference in the tuners’ thinking process, as well as an interesting dip or
steep increase after only a few game ticks: this suggests that the initialisation
methods could be improved for all tuners. Not all of them converge in the given time
for a game either (the Naïve Monte Carlo tuner is a good example shown here), so
playing longer games, with more information and more time to adapt to the specific
games and scenarios could show an overall boost in performance.

29

Conclusions

To summarise, we automatically adjusted parameters for a rolling horizon
evolutionary algorithm during play, with several optimisers…

30

Tuner performance was very similar, with

RND and NTBEA standing out in a few cases

Tuner Performance

New win rates in very difficult problems such as Dig Dug and

Lemmings

Difficult Problems

Win rates comparable to the RHEA state of the art,

surpassing it in several games.

Tuned Agent Performance

Best in combination: softmax mutation + mutation transducer

Best: 1-bit mutation; mutation only (genetic operator);

mutation transducer

Parameter Highlights

Interesting Findings

31

We’ve found that win rates of the tuned agents are comparable with the hand-picked
RHEA state of the art, surpassing it in several games, thus more general as a single
algorithm. The performance of the optimisation methods was very similar, although
the random and n-tuple bandit evolutionary algorithm stood out as better; no
significant differences were observed. From the parameter analysis, we noticed a
combination of the softmax mutation with the mutation transducer was most
beneficial in many cases. However, if dependencies are ignored, 1-bit mutation was
individually better, as was only using mutation to generate individuals, with the
mutation transducer enabled.

Lastly, we saw several win rates in very difficult problems such as Dig Dug and
Lemmings….

31

Future Work

Strengths & weaknesses of tuners,

better initialization, different options (e.g.

Bayesian Optimisation) + statistics

Tuners

Fitness functions: flat best individual,

average population fitness etc.

Parameter space: much larger

RHEA Optimisation

Tune the tuner, or the choice of tuner

Hierarchical Optimisation

Longer games + hard games

More Data Points

01

02

03

04

32

… which we aim to investigate further: obtaining more data points of such winning
games and analysing the resulting statistics could offer important information on how
to tackle these very difficult problems; and, in general, playing longer or more
complex games, with more iterations for the algorithm, could give more statistics for
more accurate performance checks and possibly more significant differences in the
methods used.

The tuners can further be investigated and analysed in more depth, as well as trying
different options, with Bayesian Optimisation as an example kindly suggested by a
reviewer. Even more so, the choice of tuner and the parameters of the tuners
themselves could be optimised, for a many-level hierarchical optimisation problem!

And lastly, the fitness function for RHEA evaluations could be improved, and things
such as the average or standard deviation of fitnesses in a population be considered.
Not to mention that the parameter space for the algorithm is much larger than that
explored here, and many more interesting insights could be given by a larger-scale
optimisation.

32

Thank You

Raluca D. Gaina | QMUL, UK
r.d.gaina@qmul.ac.uk | @b_gum22

RHEA for GVGP @ IEEE COG 2020

https://tinyurl.com/rhea20-paper

The paper itself and full details of our methods can be found at the link attached, and
you can contact me or any of the authors for any questions you might have. Thank
you for watching!

33

