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IntroductionIntroduction

 Rolling Horizon Evolutionary Algorithms (RHEA) show promise 

 in General Video Game Playing (GVGP) 

 as showcased in the General Video Game AI Competition (GVGAI). 

 Better than random initialization for faster evolution?

 No clear general analysis in previous literature
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Game AIGame AI
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Super Mario AI
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General Video Game AIGeneral Video Game AI
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General Video Game AI CompetitionGeneral Video Game AI Competition

 2D grid-physics games

 Arcade, puzzles, shooters, adventure.

 Ways to interact with the environment

 Ways to win

 Elements in a game

 Scoring systems

 Single and two player, cooperative and competitive.
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high-level view of current game state 
for agents; real-time decisions (40ms)
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MethodologyMethodology

 Try two methods …

 One Step Look Ahead (1SLA)

 Monte Carlo Tree Search (MCTS-S)

 … on 20 GVGAI games …

 … with different core parameter configurations.
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ExperimentExperiment

 Population size P - Individual length L = {1-6, 2-8, 5-10, 10-14, 15-16, 20-20}

 All other parameters fixed to default values

 Budget: 900 Forward Model calls 

 L FM calls for 1SLA 

 Half budget for MCTS-S

 MCTS-S rollout depth = L

 Validation

 Comparison with MCTS.
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=> one individual, mutate it to form population



20 Games from GVGAI corpus20 Games from GVGAI corpus

 2 classifications by Mark Nelson and Bontrager et al.

 Balanced set: 10 stochastic, 10 deterministic, varying 

difficulty and game type.
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Survive Zombies

Aliens Sea Quest

Missile Command



Results OverviewResults Overview
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 Improvement much bigger when small pop size

 MCTS seeding significantly better

 3 games in which MCTS seeding consistently bad: puzzles / long term reward

 Some games remain at 0% win rate

 Game Chopper: 26% => 100% win rate (1-6)

 Big improvement in low config shows promise of RHEA with improved evolution



Results – Vanilla vs 1SLAResults – Vanilla vs 1SLA
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Results – Vanilla vs MCTS-SResults – Vanilla vs MCTS-S
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Results – 1SLA vs MCTS-SResults – 1SLA vs MCTS-S
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Results - MCTS ValidationResults - MCTS Validation
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SummarySummary

 Analysis of One Step Look Ahead (1SLA) and Monte Carlo Tree Search (MCTS-S) 

seeding for vanilla Rolling Horizon Evolutionary Algorithm (RHEA) 

 Multiple RHEA parameter configurations

 Win rate and score measured on 20 GVGAI games

 Overall and pairwise comparison

 Validation against MCTS
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ConclusionsConclusions

 Seeding improves performance if population size is small

 MCTS seeding significantly better (performance drops if rollout depth too large)

 MCTS seeding worse in puzzle games / longer lookaheads

 Limited exploration, search too narrow

 MCTS seeding not worse than simply MCTS
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Future WorkFuture Work

 Meta-heuristic: which seeding method is best?

 Better exploration of search space & use of solution provided by seeding

 Better evolution paired with powerful seeding method

 More games to better judge significance
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