# **RHEA Enhancements for GVGP**

Raluca D. Gaina, Simon M. Lucas, Diego Perez-Liebana



University of Essex

#### Introduction

• Rolling Horizon Evolutionary Algorithms (RHEA) show promise

O in General Video Game Playing (GVGP)

O as showcased in the General Video Game AI Competition (GVGAI).

• Several improvements in literature in various contexts

○ do they work in GVGP?

O do they work together?

# Game-Playing Al







3

#### **General Video Game Al**



#### **General Video Game Al Competition**

- 2D grid-physics games
- Arcade, puzzles, shooters, adventure.
  - Ways to interact with the environment
  - Ways to win
  - Elements in a game
  - Scoring systems
  - Single and two player, cooperative and competitive.

... high-level view of current game state for agents; real-time decisions (40ms)

### **Rolling Horizon Evolution**



# Methodology

O Look at 4 parts in the evolution process ...

- Mutation operator
- Population management
- Action recommendation policy
- O Individual evaluation
- O ... in isolation and combined ... hybrids
- O ... split into 2-part experiment ...
- O ... on 20 GVGAI games ...
- ... with different core parameter configurations.

#### **Mutation operator**

O Bandit-based mutation (EA-bandit)

$$\bigcirc UCB1 = \underset{a \in A(s)}{argmax} \left\{ Q(s,a) + C_{\sqrt{\frac{\ln N(s)}{N(s,a)}}} \right\}$$

- O 2-layer UCB
  - O Individual level: which gene?
  - Gene level: which value?



### **Population management**

- O Shift buffer (EA-shift)
- Keep population between game ticks, no resetting
- Shift population to the left at next game tick
- Add new random action at the end



## Action recommendation policy



- During evaluation, keep action statistics in a tree structure
- Similar to Monte Carlo Tree Search ...
- ... but tree only used to recommend action
- Final action: most visited node at top level



 $\frown$ 

### Individual evaluation

- O Monte Carlo rollouts (EA-roll)
- At the end of individual evaluation
  - Monte Carlo simulation
  - O Length L/2.
- O Repeat R times
  - O Use average value as individual fitness



### Experiment

- O Population size P Individual length L =  $\{1-6, 2-8, 5-10, 10-14\}$
- All other parameters fixed to default values
- Budget: 900 Forward Model calls
- First part:

O EA-bandit, EA-tree and EA-shift (plus hybrids)

- Second part:
  - O EA-tree, EA-shift and EA-roll (plus hybrids)
- O Validation
  - Comparison with MCTS.

#### 20 Games from GVGAI corpus



# Results overview (part 1)

- Shift buffer best, Bandit mutation worst
- Performance proportional to parameter values, but algorithm ranking not stable
- Shift buffer matches and surpasses best vanilla performance even with small parameter values



Win percentage for config 5-10. Color bar: in how many unique games row was significantly better than column.

| Α | Vanilla       | Е | EA-Bandit            |
|---|---------------|---|----------------------|
| В | EA-Shift      | F | EA-Bandit-Shift      |
| С | EA-Tree       | G | EA-Bandit-Tree       |
| D | EA-Tree-Shift | Н | EA-Bandit-Tree-Shift |

# EA-bandit (part 1)

• One of worst variants (Vanilla RHEA better)

O 1-6: worst configuration

• Most beneficial in large configs.

# EA-tree (part 1)

• Mid-table, better than Vanilla and EA-Bandit

• Worst hybrids: +bandit mutation

• Most beneficial in low configs.

# EA-shift (part 1)

- O Best variant
- Higher scores in most games
- O 1-6: tree hybrids better
- Worst hybrids: +bandit mutation

# EA-roll (part 2)

O Best: EA-Shift-Roll (10-14, R=5), matches MCTS

- Rollouts most advantageous in low configs
- All variants with rollouts better than without
- Tree hybrids worse





#### **Results - MCTS Validation**

• EA-Shift-Roll matches generality of MCTS, but higher win percentage

| # | Algorithm     | F1 Points | Avg. Wins    |
|---|---------------|-----------|--------------|
| 1 | EA-Shift-Roll | 430       | 42.05 (2.48) |
| 2 | MCTS          | 430       | 41.30 (1.76) |

- EA-Tree-Roll worse than MCTS
- Still better in puzzle games

| # | Algorithm    | F1 Points | Avg. Wins    |
|---|--------------|-----------|--------------|
| 1 | MCTS         | 451       | 41.30 (1.76) |
| 2 | EA-Tree-Roll | 409       | 35.90 (2.27) |



- Uni-variate bandit system does **not** work when individual = sequence of actions (epistasis)
- Stats tree more beneficial in small configs
- Shift buffer led to a significant increase in score gain (win rates in small configs)
- Shift buffer + rollout saw increase inversely proportional to individual length
- Best: EA-Shift-Roll (10-14, R=5) matches MCTS generality



O Meta-heuristic: which variant is best for this problem?

• Improved bandit mutation might work better

O More games to better judge significance

