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IntroductionIntroduction

 One of the most promising techniques in General Video Game AI competition (GVGAI)

are the Rolling Horizon Evolutionary Algorithms (RHEA). 

 Analysis of the vanilla version of RHEA on 20 GVGAI games

 Special focus on the population size and the individual length. 

 Comparison with the sample Monte Carlo Tree Search (MCTS)

 Best sample agent in GVGAI.

 Base of many winning competition entries.
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RHEA in Game AI LiteratureRHEA in Game AI Literature

 Perez et al: comparison with tree 
search on the Physical Travelling 
Salesman Problem

 Justesen et al: Hero Academy, groups 
of actions evolved for a single turn, 
for up to 6 different units, fixed 
population of 100 individuals (online 
evolution is able to beat MCTS).

 Wang et al: modified version in 
Starcraft micro1, evolving plans to 
determine which script each unit 
should use at each time step. 

Hero Academy: https://youtu.be/nox2dk0_aSA

Starcraft micro: https://youtu.be/Xpjp0sm2reE

31 JarCraft: https://github.com/tbalint/JarCraft ::: SparCraft: https://github.com/davechurchill/ualbertabot



Game AIGame AI

Super Mario AI

Ms. Pacman
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General Video Game AIGeneral Video Game AI

any game ! 5



General Video Game AI CompetitionGeneral Video Game AI Competition

 2D grid-physics games

 Arcade, puzzles, shooters, adventure.

 Ways to interact with the environment

 Ways to win

 Elements in a game

 Scoring systems

 Single and two player, cooperative and competitive.

agents receive only a high-level view 

of the current game state and must 

make decisions in real-time (40ms)
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ApproachApproach

 Population sizes P={1, 2, 5, 7, 10, 13, 20}, individual lengths L={6, 8, 10, 12, 14, 16, 20}

 All other parameters fixed to default values

 Budget: 480 Forward Model calls 

 Special case tested – Random Search: P=24, L=20

 No evolution.

 Validation

 Comparison with MCTS.

 Budget extension.
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20 Games from GVGAI corpus20 Games from GVGAI corpus

 Uniformly sampled from two classifications by Mark Nelson (based on vanilla MCTS 
controller performance in 62 games) and Bontrager et al. (based on sample 
controllers + competition entries performance in 49 games).

 Balanced set: 10 stochastic, 10 deterministic.

Survive Zombies

Aliens Sea Quest

Missile Command
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Results OverviewResults Overview

 Trend noticed in most of the games: win rate increases, regardless of game type. Overall, 

performance increases with greater parameter values.

 Exceptions: 

 win rate starts at 100% (room for improvement, Aliens and Intersection) 

 win rate stays very close to 0% (outstanding difficulty, Roguelike).

 Best: P = 20, L = 20

 47.50 (2.33) win rate

 Worst: P = 1, L = 20

 33.15 (2.60)
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Results – Population Variation (Deterministic)Results – Population Variation (Deterministic)

 Winning rate increases progressively in most games. 

 High diversity in performance 

 Interesting games (largest performance difference):

 Game 67 (Plaque Attack)

 Game 91 (Wait for Breakfast)

 Game 60 (Missile Command)

11



Results – Population Variation (Stochastic)Results – Population Variation (Stochastic)

 If the length of the individual is small, increasing the population size is not beneficial in all cases, sometimes 
causing a drop in win rate

 Interesting games (largest performance difference):

 Game 13 (Butterflies)

 Game 22 (Chopper)

 Game 25 (Crossfire)

 Game 77 (Sea Quest)

 Game 84 (Survive Zombies)
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Results – Individual Variation (Deterministic)Results – Individual Variation (Deterministic)

 If population size is small, win rate sees a significant increase followed by a drop in large individual lengths; 

this issue is solved by increasing the population size. 

 Interesting games (largest performance difference):

 Game 67 (Plaque Attack)
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Results – Individual Variation (Stochastic)Results – Individual Variation (Stochastic)

 Performance highly dependant on game.

 No significant change in win rate can be appreciated in larger population sizes.

 Interesting games (largest performance difference):

 Game 13 (Butterflies)

 Game 22 (Chopper)
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Results – Random Search & Increased BudgetResults – Random Search & Increased Budget

Algorithm Average Wins (T) Points (T) Average Wins (D) Points (D) Average Wins (S) Points (S)

RHEA-1920 48.25 (2.36) 351 36.30 (2.88) 181 60.20 (1.84) 170

RHEA-1440 48.05 (2.23) 339 35.40 (2.82) 177 60.70 (1.65) 162

RHEA-960 47.85 (2.39) 323 34.60 (2.99) 162 61.10 (1.79) 161

RHEA/RS-480 46.60 (2.40) 271 32.90 (3.04) 131 60.30 (1.76) 140

 Reminder:

 No evolution.

 L = 20, P = 24

 Performance no worse than any other RHEA configuration.

 Budget increase => Performance increase
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Results – RHEA vs MCTSResults – RHEA vs MCTS

 If P > 5, RHEA outperforms MCTS.

 Random Search (RS) outperforms MCTS 

in terms of win rate, but not in F1 points.

 MCTS is more general.

 In deterministic games, MCTS 

performance similar to worst RHEA 

configuration (P=1, L=20).

 In stochastic games, MCTS and RS 

performances are similar.
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Algorithm
Average 

Wins (T)

Average 

Wins (D)

Average 

Wins (S)

Worst RHEA 33.15 (2.60) 22.50 (2.99) 43.80 (2.22)

RHEA P=1 37.95 (2.47) 26.90 (2.93) 49.00 (2.01)

RHEA P=2 41.05 (2.62) 27.90 (3.05) 54.20 (2.20)

RHEA P=5 44.65 (2.40) 31.90 (3.18) 57.40 (1.61)

RHEA P=7 44.65 (2.36) 30.80 (3.09) 58.50 (1.64)

RHEA P=10 44.06 (2.26) 29.50 (2.90) 58.60 (1.63)

RHEA P=13 45.15 (2.47) 32.10 (3.06) 58.20 (1.88)

RHEA P=20 44.75 (2.31) 31.50 (2.87) 58.00 (1.74)

RS 46.60 (2.40) 32.90 (3.04) 60.30 (1.76)

MCTS 41.45 (1.89) 22.20 (2.45) 60.70 (1.34)



SummarySummary

 Analysis of population size and individual length of vanilla Rolling Horizon Evolutionary 

Algorithm (RHEA) 

 Win rate measured on 20 games of the General Video Game AI corpus (selected based 
on difficulty for a diverse set, deterministic vs  stochastic).

 Special case of Random Search studied, comparison with MCTS and increased budget 

effects.
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ConclusionsConclusions

 RHEA is no better than Random Search, worse in many cases.

 RHEA cannot explore space quickly enough in limited budget (the increased budget 

results confirm this; so better and faster evolutionary operators and improvements are 
needed).

 RHEA can outperform MCTS if population size is high.

 Performance increased in most games in higher population sizes and higher individual 

lengths, but there are cases where the opposite is true.

 Bigger impact noticed in population size variation than individual length.
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Future WorkFuture Work

 Meta-heuristics: devise methods to identify the type of game being played and …

 … employ different parameter settings.

 … modify dynamically parameter settings.

 Improvement of vanilla RHEA in this general setting.

 Seeking bigger improvements of action sequences during the evolution phase, without the need 
of having too broad an exploration as in the case of RS.

 Being able to better handle long individual lengths in order for them to not hinder the 
evolutionary process.

 Consider effects in stochastic games of …

 … More elite members.

 … Resampling individuals to reduce noise.
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